Skip to Content
Merck
  • Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry.

Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry.

Journal of the American Chemical Society (2015-04-09)
Abdelaziz Al Ouahabi, Laurence Charles, Jean-François Lutz
ABSTRACT

Sequence-defined non-natural polyphosphates were prepared using iterative phosphoramidite protocols on a polystyrene solid support. Three monomers were used in this work: 2-cyanoethyl (3-dimethoxytrityloxy-propyl) diisopropylphosphoramidite (0), 2-cyanoethyl (3-dimethoxytrityloxy-2,2-dimethyl-propyl) diisopropylphosphoramidite (1), and 2-cyanoethyl (3-dimethoxytrityloxy-2,2-dipropargyl-propyl) diisopropylphosphoramidite (1'). Phosphoramidite coupling steps allowed rapid synthesis of homopolymers and copolymers. In particular, the comonomers (0, 1), (0, 1'), and (1, 1') were used to synthesize sequence-encoded copolymers. It was found that long encoded sequences could be easily built using phosphoramidite chemistry. ESI-HRMS, MALDI-HRMS, NMR, and size exclusion chromatography analyses indicated the formation of monodisperse polymers with controlled comonomer sequences. The polymers obtained with the comonomers (0, 1') and (1, 1') were also modified by copper-catalyzed azide-alkyne cycloaddition with a model azide compound, namely 11-azido-3,6,9-trioxaundecan-1-amine. (1)H and (13)C NMR analysis evidenced quantitative modification of the alkyne side-chains of the monodisperse copolymers. Thus, the molecular structure of the coding monomer units can be easily varied after polymerization. Altogether, the present results open up interesting avenues for the design of information-containing macromolecules.

MATERIALS
Product Number
Brand
Product Description

Supelco
Dichloromethane solution, contains 10 % (v/v) methanol
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Pyridine, ≥99%
Sigma-Aldrich
Trichloroacetic acid solution, 6.1 N
Sigma-Aldrich
DCC, 1.0 M in methylene chloride
Sigma-Aldrich
Methanol solution, suitable for NMR (reference standard), 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Pyridine, anhydrous, 99.8%
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
N,N-Diisopropylethylamine, purified by redistillation, 99.5%
Sigma-Aldrich
N,N-Diisopropylethylamine, ReagentPlus®, ≥99%
Sigma-Aldrich
DCC, 99%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
4,4′-Dimethoxytrityl chloride, 95%
Sigma-Aldrich
4-(Dimethylamino)pyridine, ReagentPlus®, ≥99%
Sigma-Aldrich
4,4′-Dimethoxytriphenylmethyl chloride, ≥97.0% (HPLC)
Sigma-Aldrich
2,5-Dihydroxybenzoic acid, 98%
Supelco
2,5-Dihydroxybenzoic acid, >99.0% (HPLC)
Sigma-Aldrich
2-Cyanoethyl N,N-diisopropylchlorophosphoramidite, Cl 13.5-15.5 %
Sigma-Aldrich
Propargyl bromide solution, 80 wt. % in toluene, contains 0.3% magnesium oxide as stabilizer
Sigma-Aldrich
Propargyl bromide solution, 80 wt. % in xylene
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Trichloroacetic acid, ACS reagent, ≥99.0%