Skip to Content
MilliporeSigma
  • Estrogen-dependent hypersensitivity to diabetes-evoked cardiac autonomic dysregulation: Role of hypothalamic neuroinflammation.

Estrogen-dependent hypersensitivity to diabetes-evoked cardiac autonomic dysregulation: Role of hypothalamic neuroinflammation.

Life sciences (2020-04-04)
Mohamed A Fouda, Korin E Leffler, Abdel A Abdel-Rahman
ABSTRACT

To investigate if autonomic dysregulation is exacerbated in female rats, subjected to diabetes mellitus (DM), via a paradoxical estrogen (E2)-evoked provocation of neuroinflammation/injury of the hypothalamic paraventricular nucleus (PVN). We measured cardiac autonomic function and conducted subsequent PVN neurochemical studies, in DM rats, and their respective controls, divided as follows: male, sham operated (SO), ovariectomized (OVX), and OVX with E2 supplementation (OVX/E2). Autonomic dysregulation, expressed as sympathetic dominance (higher low frequency, LF, band), only occurred in DM E2-replete (SO and OVX/E2) rats, and was associated with higher neuronal activity (c-Fos) and higher levels of TNFα and phosphorylated death associated protein kinase-3 (p-DAPK3) in the PVN. These proinflammatory molecules likely contributed to the heightened PVN oxidative stress, injury and apoptosis. The PVN of these E2-replete DM rats also exhibited upregulations of estrogen receptors, ERα and ERβ, and proinflammatory adenosine A1 and A2a receptors. The E2-dependent autonomic dysregulation likely predisposes DM female rats and women to hypersensitivity to cardiac dysfunction. Further, upregulations of proinflammatory mediators including adenosine A1 and A2 receptors, TNFα and DAPK3, conceivably explain the paradoxical hypersensitivity of DM females to PVN inflammation/injury and the subsequent autonomic dysregulation in the presence of E2.