Skip to Content
MilliporeSigma

Superoxide dismutase as a target of clioquinol-induced neurotoxicity.

Biochemical and biophysical research communications (2014-04-24)
Kazuyuki Kawamura, Yukiko Kuroda, Masako Sogo, Miki Fujimoto, Toshio Inui, Takao Mitsui
ABSTRACT

Subacute myelo-optico-neuropathy (SMON) is a progressive neurological disorder affecting the spinal cord, peripheral nerves and optic nerves. Although it has been assumed that SMON was caused by intoxication of clioquinol, the mechanism underlying clioquinol-induced neurotoxicity is not fully understood. This study aimed to clarify the relevance of oxidative stress to clioquinol-induced neurotoxicity and the cause of the enhanced oxidative stress. Clioquinol induced cell death in human-derived neuroblastoma cell line, SH-SY5Y, in a dose-dependent manner. This process was accompanied by activation of caspase-3 and enhanced production of reactive oxygen species (ROS). We examined whether clioquinol inhibited the activity of superoxide dismutase-1 (SOD1), based on its metal chelating properties. Clioquinol inhibited activities of purified SOD1 in a dose-dependent manner. Cytosolic SOD activities were also inhibited in SH-SY5Y cells treated with clioquinol. Finally, addition of exogenous SOD1 to the culture significantly reduced enhanced ROS production and cell death induced by clioquinol in SH-SY5Y cells. These findings suggested that enhanced oxidative stress caused by inhibition of SOD1 undelay clioquinol-induced neurotoxicity and was relevant to the pathogenesis of SMON.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
5-Chloro-7-iodo-8-quinolinol, ≥95.0% (HPLC)
SKU
Pack Size
Availability
Price
Quantity
Supelco
Clioquinol, VETRANAL®, analytical standard
SKU
Pack Size
Availability
Price
Quantity
Clioquinol, European Pharmacopoeia (EP) Reference Standard
SKU
Pack Size
Availability
Price
Quantity
USP
Clioquinol, United States Pharmacopeia (USP) Reference Standard
SKU
Pack Size
Availability
Price
Quantity