Skip to Content
MilliporeSigma
  • Studies on the collision-induced dissociation of adipoR agonists after electrospray ionization and their implementation in sports drug testing.

Studies on the collision-induced dissociation of adipoR agonists after electrospray ionization and their implementation in sports drug testing.

Journal of mass spectrometry : JMS (2015-03-25)
Josef Dib, Nils Schlörer, Wilhelm Schänzer, Mario Thevis
ABSTRACT

AdipoR agonists are small, orally active molecules capable of mimicking the protein adiponectin, which represents an adipokine with antidiabetic and antiatherogenic effects. Two adiponectin receptors were reported in the literature referred to as adipoR1 and adipoR2. Activation of these receptors stimulates mitochondrial biogenesis and results in an improved oxidative metabolism (via adipoR1) and increased insulin sensitivity (via adipoR2). Hence, adipoR agonists are potentially performance enhancing substances and targets of proactive and preventive anti-doping measures. In this study, two adipoR agonists termed AdipoRon and 112254 as well as two isotopically labeled internal standards (ISTDs) were synthesized in three-step reactions. The products were fully characterized by nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS) and density functional theory (DFT) computation. Collision-induced dissociation pathways following electrospray ionization were suggested based on the determined elemental compositions of product ions, comparison to product ions derived from labeled analogs (ISTDs), H/D-exchange experiments and the results of DFT calculations. The most abundant product ions were found at m/z 174, tentatively assigned to protonated 1-benzyl-1,2,3,4-tetrahydropyridine for AdipoRon, and m/z 207, suggested as protonated 1-(4-methoxybenzyl)piperazine, for 112254. Notably, the loss of the heterocyclic ring (i.e. piperazine and piperidine, respectively) in a supposedly intramolecular elimination reaction was observed in both cases. A qualitative determination of both AdipoR agonists in human plasma was established and fully validated for doping control purposes. Validation items such as recovery (86-89%), specificity, linearity, lower limit of detection (1 ng/ml), intraday (3-18%) and interday (5-16%) precision as well as ion suppression or enhancement were determined. Based on these findings adipoR agonists can be implemented in sports drug testing procedures.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
4-tert-Butylbenzoic acid, 99%
Sigma-Aldrich
4-Hydroxybenzophenone, 98%
Sigma-Aldrich
Methyl bromoacetate, 97%
Sigma-Aldrich
Piperazine-2,2,3,3,5,5,6,6-d8 dihydrochloride, ≥98 atom % D, ≥98% (CP)
Sigma-Aldrich
Sodium methoxide, reagent grade, 95%, powder
Sigma-Aldrich
Sodium methoxide solution, ACS reagent, 0.5 M CH3ONa in methanol (0.5N)
Sigma-Aldrich
Sodium methoxide solution, 25 wt. % in methanol
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
1-(4-Methoxybenzyl)piperazine, 97%
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
4-Amino-1-benzylpiperidine, 98%
Sigma-Aldrich
Sodium hydroxide, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Sodium hydroxide solution, purum, ≥32%
Sigma-Aldrich
Hydrochloric acid, puriss., 24.5-26.0%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Hydrochloric acid, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in acetic acid
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in diethyl ether
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, powder
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%