Skip to Content
MilliporeSigma

FOXO1 differentially regulates both normal and diabetic wound healing.

The Journal of cell biology (2015-04-29)
Chenying Zhang, Bhaskar Ponugoti, Chen Tian, Fanxing Xu, Rohinton Tarapore, Angelika Batres, Sarah Alsadun, Jason Lim, Guangyu Dong, Dana T Graves
ABSTRACT

Healing is delayed in diabetic wounds. We previously demonstrated that lineage-specific Foxo1 deletion in keratinocytes interfered with normal wound healing and keratinocyte migration. Surprisingly, the same deletion of Foxo1 in diabetic wounds had the opposite effect, significantly improving the healing response. In normal glucose media, forkhead box O1 (FOXO1) enhanced keratinocyte migration through up-regulating TGFβ1. In high glucose, FOXO1 nuclear localization was induced but FOXO1 did not bind to the TGFβ1 promoter or stimulate TGFβ1 transcription. Instead, in high glucose, FOXO1 enhanced expression of serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2), and chemokine (C-C motif) ligand 20 (CCL20). The impact of high glucose on keratinocyte migration was rescued by silencing FOXO1, by reducing SERPINB2 or CCL20, or by insulin treatment. In addition, an advanced glycation end product and tumor necrosis factor had a similar regulatory effect on FOXO1 and its downstream targets and inhibited keratinocyte migration in a FOXO1-dependent manner. Thus, FOXO1 expression can positively or negatively modulate keratinocyte migration and wound healing by its differential effect on downstream targets modulated by factors present in diabetic healing.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
D-Mannitol, BioUltra, ≥99.0% (sum of enantiomers, HPLC)
Sigma-Aldrich
D-Mannitol, ≥98% (GC), suitable for plant cell culture
Sigma-Aldrich
D-Mannitol, meets EP, FCC, USP testing specifications
Sigma-Aldrich
D-Mannitol, BioXtra, ≥98% (HPLC)
Sigma-Aldrich
D-Mannitol, ACS reagent
Sigma-Aldrich
D-Mannitol, ≥98% (GC)
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
D-Mannitol, SAJ special grade, ≥99.0%
Sigma-Aldrich
Formaldehyde solution, JIS special grade, 36.0-38.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehyde solution, 10%
Sigma-Aldrich
D-Mannitol, SAJ first grade, ≥99.0%
Sigma-Aldrich
Formaldehyde solution, SAJ first grade, ≥35.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Citric acid, anhydrous, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Citric acid, 99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Streptozocin, ≥75% α-anomer basis, ≥98% (HPLC), powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Citric acid, BioUltra, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Citric acid, ≥99.5%, FCC, FG
Sigma-Aldrich
2-Hydroxybutyric acid sodium salt, 97%
Sigma-Aldrich
Citric acid, ACS reagent, ≥99.5%
Sigma-Aldrich
Citric acid, SAJ first grade, ≥99.5%