Skip to Content
MilliporeSigma
  • Regulation of density of functional presynaptic terminals by local energy supply.

Regulation of density of functional presynaptic terminals by local energy supply.

Molecular brain (2015-07-18)
Hang Zhou, Guosong Liu
ABSTRACT

The density of functional synapses is an important parameter in determining the efficacy of synaptic transmission. However, how functional presynaptic terminal density is regulated under natural physiological conditions is still poorly understood. We studied the factors controlling the density of presynaptic functional terminals at single dendritic branches of hippocampal neurons and found that elevation of intracellular Mg(2+) concentration was effective in increasing the density of functional terminals. Interestingly, the upregulation was not due to synaptogenesis, but to the conversion of a considerable proportion of presynaptic terminals from nonfunctional to functional. Mechanistic studies revealed that the nonfunctional terminals had inadequate Ca(2+)-sensitivity-related proteins, resulting in very low Ca(2+) sensitivity within their vesicle release machinery. We identified energy-dependent axonal transport as a primary factor controlling the amount of Ca(2+)-sensitivity-related proteins in terminals. The elevation of intracellular Mg(2+) enhanced local energy supply and promoted the increase of Ca(2+)-sensitivity-related proteins in terminals, leading to increased functional terminal density. Our study suggests that local energy supply plays a critical role in controlling the density of functional presynaptic terminals, demonstrating the link between energy supply and efficacy of synaptic transmission.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Synaptophysin Antibody, clone SY38, clone SY38, Chemicon®, from mouse
Sigma-Aldrich
Tannic acid, Source: Chinese natural gall nuts
Sigma-Aldrich
Tannic acid
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Os EnCat® 40, extent of labeling: 0.3 mmol/g Os loading
Sigma-Aldrich
Trizma® base, anhydrous, free-flowing, Redi-Dri, ≥99.9%
Sigma-Aldrich
(±)-Propylene oxide, ReagentPlus®, ≥99%
Sigma-Aldrich
Tannic acid, ACS reagent
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Trizma® base, ≥99.0% (T)
Sigma-Aldrich
Trizma® base, puriss. p.a., ≥99.7% (T)
Sigma-Aldrich
Sodium chloride, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, ~5 M in H2O
Sigma-Aldrich
Trizma® base, BioUltra, ≥99.8% (T)
Sigma-Aldrich
(±)-Propylene oxide, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Tris(hydroxymethyl)aminomethane, ACS reagent, ≥99.8%
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, ≥98.5% (GC)
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Osmium tetroxide, Sealed ampule.
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, ≥99.0% (GC)