Skip to Content
MilliporeSigma
  • Hyaluronan Binding Identifies a Functionally Distinct Alveolar Macrophage-like Population in Bone Marrow-Derived Dendritic Cell Cultures.

Hyaluronan Binding Identifies a Functionally Distinct Alveolar Macrophage-like Population in Bone Marrow-Derived Dendritic Cell Cultures.

Journal of immunology (Baltimore, Md. : 1950) (2015-06-19)
Grace F T Poon, Yifei Dong, Kelsey C Marshall, Arif Arif, Christoph M Deeg, Manisha Dosanjh, Pauline Johnson
ABSTRACT

Although classical dendritic cells (DCs) arise from distinct progenitors in the bone marrow, the origin of inflammatory DCs and the distinction between monocyte-derived DCs and macrophages is less clear. In vitro culture of mouse bone marrow cells with GM-CSF is a well-established method to generate DCs, but GM-CSF has also been used to generate bone marrow-derived macrophages. In this article, we identify a distinct subpopulation of cells within the GM-CSF bone marrow-derived DC culture based on their ability to bind hyaluronan (HA), a major component of the extracellular matrix and ligand for CD44. HA identified a morphologically distinct subpopulation of cells within the immature DC population (CD11c(+) MHC II(mid/low)) that were CCR5(+)/CCR7(-) and proliferated in response to GM-CSF, but, unlike immature DCs, did not develop into mature DCs expressing CCR7 and high levels of MHC II, even after stimulation with LPS. The majority of these cells produced TNF-α in response to LPS but were unable to activate naive T cells, whereas the majority of mature DCs produced IL-12 and activated naive T cells. This HA binding population shared many characteristics with alveolar macrophages and was retained in the alveolar space after lung instillation even after LPS stimulation, whereas the MHC II(high) mature DCs were found in the draining lymph node. Thus, HA binding in combination with MHC II expression can be used to identify alveolar-like macrophages from GM-CSF-treated bone marrow cultures, which provides a useful in vitro model to study alveolar macrophages.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, SAJ special grade, ≥99.0%
Sigma-Aldrich
Hyaluronic acid sodium salt from rooster comb, avian glycosaminoglycan polysaccharide
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
2,3-Dimercapto-1-propanol, ≥98% (iodometric)
Sigma-Aldrich
Brefeldin A, ≥99% (HPLC and TLC), BioXtra, for molecular biology
Sigma-Aldrich
Brefeldin A, from Penicillium brefeldianum, ≥99% (HPLC and TLC)
Sigma-Aldrich
Lipopolysaccharides from Escherichia coli O111:B4, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Brefeldin A, from Penicillium brefeldianum, Ready Made Solution, 10 mg/mL in DMSO