

Polymerization for Advanced Applications

Vol. 1 No. 1

Initiator/Stabilizer FAQs

Polymer Analysis by NMR

Fluorinated Hyperbranched Polymers

Etch-Resistant Block Copolymers

Bioactive Hydrogels

Anionic Polymerization

Premiere Issue

Introduction

Welcome to the premiere issue of Material Matters, a technical guide from Sigma-Aldrich dedicated to addressing research needs in materials science and technology. The theme for this issue is polymerization. Innovative polymers are helping advance almost every field of materials science, from alternate energy to organic electronics. Included in this guide are reviews from researchers in relevant technical fields that discuss a subset of some of the tools available to scientists and engineers.

Our mission at Sigma-Aldrich is to inspire and advance your research. I hope that by highlighting the innovations and products featured in this technical guide, we will help generate the next ideas to significantly impact research in polymerization.

Sincerely,

whe Drochoel

Luke Grocholl, Ph.D. Materials Science Team Sigma-Aldrich Corporation

The MatSci eMailbox

Contact us at matsci@sial.com for:

- Comments on this technical guide
- Suggested topics for future technical guides
- New product suggestions
- Spectral and other data to facilitate your research
- Questions for inclusion in a FAQ
- Subscriptions to future issues of Material Matters

The Polymerization Tools Web Site Visit us at sigma-aldrich.com/poly for:

- Over 1000 monomers for applications from drug delivery to PLEDs
- Guide to thermal initiators with solvent-specific half-life temperature values
- Absorbance spectra of over 250 photoinitiators
- Functional polymers for the synthesis of advanced copolymers
- Comprehensive list of surfactants organized by HLB value
- Cross-linkers, chain transfer agents, plasticizers, and stablizers for polymer modification

About Our Cover

Central to advances in science and engineering are the dedicated researchers whose ideas drive tomorrow's technologies. This premiere issue of *Material Matters* features advanced and unique Sigma-Aldrich materials for polymerization such as monomers, cross-linkers, and functional polymers. The cover depicts how our products combine with your ideas to yield the next generation of nanolithography, fiber optics, flexible LEDs and bioactive polymers for drug delivery. *Material Matters—Chemistry Driving Performance*.

Material Matters

Vol. 1 No. 1

Aldrich Chemical Co., Inc. Sigma-Aldrich Corporation 6000 N. Teutonia Ave. Milwaukee, WI 53209, USA

To Place Orders

Telephone	800-325-3010 (USA)
FAX	800-325-5052 (USA)

Customer & Technical Services

Customer Inquiries	800-325-3010
Technical Service	800-231-8327
SAFC [™]	800-244-1173
Custom Synthesis	800-244-1173
Flavors & Fragrances	800-227-4563
International	414-438-3850
24-Hour Emergency	414-438-3850
Web Site	sigma-aldrich.com
Email	aldrich@sial.com

Subscriptions

To request your **FREE** subscription to *Material Matters*, please contact us by:

Phone:	800-325-3010 (USA)
Mail:	Attn: Marketing Communications Aldrich Chemical Co., Inc. Sigma-Aldrich Corporation P.O. Box 355 Milwaukee, WI 53201-9358
Email:	sams-usa@sial.com

International customers, please contact your local Sigma-Aldrich office. For worldwide contact information, please see back cover.

Material Matters is also available in PDF format on the Internet at sigma-aldrich.com/matsci.

Aldrich brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

Material Matters is a publication of Aldrich Chemical Co., Inc. Aldrich is a member of the Sigma-Aldrich Group. © 2006 Sigma-Aldrich Co.

Ε

ma-aldrich.co

s i g

Initiator/Stabilizer FAQs

Dr. S. S. Newaz Polyorganix Inc. Houston, TX

Q. How does one choose an appropriate initiator?

In a free-radical addition polymerization, the choice of polymerization initiator depends mainly on two factors: a) its solubility and

b) its decomposition temperature. If the polymerization is performed in an organic solvent, then the initiator should be soluble in that solvent, and the decomposition temperature of the initiator must be at or below the boiling point of the solvent. Commonly, AIBN (2,2'-Azobis(2-methylpropionitrile)) (**441090**, dec.102–104°C) and BPO (2-(4-Biphenyl)-5-phenyloxazole) (**216984**, mp 115–119°C) suit these requirements. If the desired polymerization occurs at or below 20 °C, then special, low-temperature free-radical initiators need to be used. Various azo-type initiators can be chosen to satisfy the decomposition temperature requirement.

For emulsion polymerization or polymerization in an aqueous system, a water-soluble initiator like $K_2S_2O_8$ (**379824**) or an organic, water-soluble initiator (4,4'-Azobis(4-cyanovaleric acid)) (**118168**, dec.118–125 °C) would be suitable.

Q. How does one determine the reactivity of a monomer?

Determination of monomer reactivity is not always obvious or straightforward. Researchers rely on their experience and published data on individual monomers. In general, extent of conjugation in the molecular structure can be viewed as indicative of its tendency to form the initial free radical required for propagating a freeradical polymerization. Usually, a more conjugated system is more likely to undergo free-radical polymerization.

Q. When is it necessary to remove a stabilizer prior to polymerization and how does one do so?

To inhibit polymerization during storage, many monomers are provided with a stabilizer as indicated by the label. Usually, it is not necessary to remove stabilizers. They are typically present in ppm level, and the use of a free radical initiator at the polymerization temperature will overwhelm the effect of the stabilizer. In worstcase scenarios, one may need to add extra amounts of initiator to sustain an acceptable polymerization rate. In most cases, once a polymerization initiates, the rate can be sustained without much difficulty. If, however, it is absolutely necessary to remove the stabilizer, column chromatography is the preferred method (for inhibitor removal columns, see products **306312**, **311332**, **306320**).

Q. How does one remove residual initiator, stabilizer, and/or unreacted monomer after polymerization?

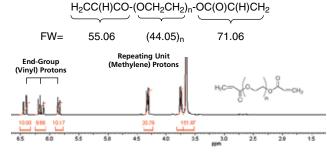
It is a common practice to dissolve the polymers in a solvent prior to end use, followed by precipitating the polymer using a cosolvent. Usually, the residual initiators and stabilizers will remain in solution and the polymers will separate out as a solid (powder, gum, or fibers). This process may be repeated until desirable polymer characteristics are obtained. This fractional precipitation is also effective in removing lower molecular weight polymers, resulting in narrower molecular weight distribution—of course accompanied with a loss of yield. Typical solvent/cosolvent pairs could be toluene/hexane, toluene/methanol, THF/water, etc., determined by the relative solubilities of the polymer versus the small-molecule component.

For initiator solubilities and decomposition temperatures, visit our Web site at sigma-aldrich.com/poly.

Polymer Analysis by NMR

Sigma-Aldrich Quality Control Team

One of the challenges polymer scientists face is molecular weight (average chain length) determination of their materials. While membrane osmometry, gel permeation chromatography, viscosity analysis and mass spectrometry are typically used for molecular weight determination, the techniques can be time consuming, inaccurate for the molecular weight ranges involved, or require specialized instrumentation. End-group analysis by NMR offers an easy alternative method using an instrument commonly found in many analytical labs. In addition, NMR analysis can also be used to accurately determine monomer ratios for various copolymer.


Scientists at Sigma-Aldrich routinely determine numberaverage molecular weight (M_n) by ¹H NMR end-group analysis for polymers having M_n values under 3000. Sensitivity of the instrument to detect end-group protons will determine the upper limit that can be measured. In order to use this method, the following criteria must be met:

- Identifiable end-group protons distinguishable from repeating monomer-group protons by NMR
- Accurate integration of both end-group and monomer protons
- Knowledge of monomer formula weights

Once the ratio of protons on the end-groups to protons on the polymer chain is determined, using the NMR, simple math can be applied to generate the M_n value.

This example illustrates this method:

437441 Poly(ethylene glycol) diacrylate

1) Calculation, integral per proton:

Locate the end-group proton signals (ca. 5.8, 6.2 & 6.4 ppm)

integral per proton = <u>sum of vinyl proton integrals</u> # of protons in the two vinyl end groups

$$=\frac{10.00+9.66+10.17}{6}$$
 = **4.97 per proton**

2) Calculation, number of repeating monomer units, n:

Locate the OCH₂CH₂ proton signals (ca. 3.6, 3.7 & 4.3 ppm)

 $=\frac{(20.79 + 151.87)/4}{4.97}$ = 8.69 repeating units, n

3) Calculation, M_n:

$$\begin{split} M_n &= (FW \text{ end groups}) + (FW \text{ repeating unit})(n) \\ &= (55.06 + 71.60) + (44.05)(8.69) = \textbf{509} \end{split}$$

Therefore, the M_n of this polymer is approx. 509

P

ALDRICH

0 r d

Fluorinated Hyperbranched Polymers

Prof. Anja Mueller Department of Chemistry Central Michigan University, Mount Pleasant, MI

Fluorocarbon polymers, like small-molecule fluorocarbons, exhibit increased thermal stability, hydrophobicity, lipophobicity, improved chemical resistance, and decreased intermolecular attractive forces

in comparison to their hydrocarbon analogs.¹ These properties derive from the fundamental atomic properties of fluorine: high ionization potential, low polarizability, and high electronegativity. Due to the very high electronegativity, C–F bonds are always strongly polarized. The strength of the C–F bond is due to its highly ionic character, which accounts for the thermal stability of perfluorocarbons. The high ionization potential, combined with the low polarizability, leads to weak intermolecular interactions, which in turn leads to low surface energy and low refractive indices for perfluorocarbons. Therefore, perfluorocarbons have been used to create non-stick and non-wettable surfaces with low surface energies.

Linear fluorinated polymers, such as tetrafluoroethylene (Teflon®) exhibit high crystallinity, which increases the melting point even further. That often leads to inhibitively high processing temperatures. For applications such as mold releases or coatings, high crystallinity is often not needed or even unfavorable.

The superior chemical resistance, hydrophobicity, and low adhesive forces can be coupled with improved processibility (high solubility, low viscosity)² by making highly branched fluorocarbon polymers (**Figure 1**).³ The glass transition temperature of these materials is up to 55 °C (depending on molecular weight), but they are thermally stable to 300 °C, which is sufficient for most applications. The contact angle with water for this hyperbranched fluoropolymer is just below 100° (tetrafluoroethylene: 105°), which can be increased to 120° by substituting one-third of the remaining *p*-fluorines of the structure with longer fluoroalkyl chains.

This material has improved lubricating properties and has been used as an imprinting mold release (**Figure 2**).⁴ With a mold coated with the hyperbranched polymer, 250 nm circles and 50–60 nm lines can be imprinted without the pattern being destroyed by removing the imprinter.

For coatings applications, the hyperbranched fluorinated polymer has to be cross-linked to make it less brittle (fluorocarbon polymers have not only reduced adhesion, but also reduced cohesion). At the same time, the cross-linking molecule can be used to introduce other properties or additional functional groups.⁵

This family of materials thus combines the superior properties of fluorocarbon polymers with an easy synthesis and processibility, allowing for its use in a variety of applications.

References: (1) Chambers, R. D. Fluorine in Organic Chemistry; Olah, G.A., Ed.; Interscience Monograph on Organic Chemistry; John Wiley & Sons: New York, 1973. (2) Mourey, Y. H. et al. Macromolecules **1992**, 25, 240. (3) Mueller, A. et al. Macromolecules **1998**, 31, 776. (4) Mueller, A. Hyperbranched Fluoropolymers: Synthesis, Characterization, Derivatization, and Applications; Ph.D. Thesis 1998, Wooley, K.L., Adv.; Dept. of Chemistry, Washington University, St. Louis, MO. (5) Gan, D. et al. J. Polym. Sci., Part A: Polym. Chem. **2003**, 41(22), 3531.

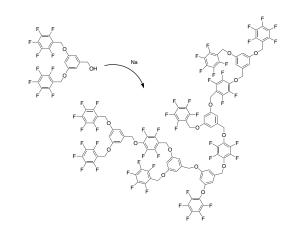
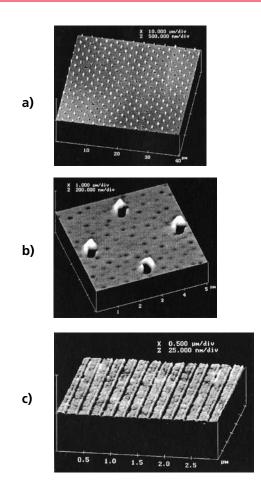



Figure 1. A highly cross-linked fluorinated polymer.

Figure 2. AFM images of a) 250nm punctures in ca. 100 nm thick film of fluoroalkyl-substituted HBFP; b) expelled material adjacent to punctures; c) imprint of 50–60 nm thick lines spaced 210 nm apart. Imprinting: Krchnavek, Dept. of Electrical Engineering, Washington University, St. Louis; AFM: Tomasz Kowalewski, Dept. of Chemistry, Carnegie Mellon University.

Ε

sigma-aldrich.co

TO ORDER: Contact your local Sigma-Aldrich office (see back cover), call 1-800-325-3010 (USA), or visit sigma-aldrich.com/matsci.

uorinated

Hyperbranched Polymers

Fluorinated Monomers

Heptadecafluorodecyl acrylate, 97% Heneicosafluorododecyl acrylate, 96%

2,2,2-Trifluoroethyl methacrylate, 99%

2-(Trifluoromethyl)acrylic acid, 98%

Zonyl[®] TM fluoromonomer

$ \begin{array}{c} F \\ F \\ F \\ 00 mg \\ 00 mg \\ 1 g \\ 5 g \\ - \end{array} $	257591-25 257591-10 2,3,4,5,6-P C ₈ H ₃ F ₅ MW: 194.1 BP: 62–63 ° 196916-56
00 mg	336.23 MP: 160–10 257591-5G 257591-25 257591-10 2,3,4,5,6-P C ₈ H ₃ F ₅ MW: 194.1 BP: 62–63
00 mg	MP: 160–1 257591-5G 257591-25 257591-10 2,3,4,5,6-P C ₈ H ₃ F ₅ MW: 194.1 BP: 62–63
00 mg	257591-5G 257591-25 257591-10 2,3,4,5,6-P C ₈ H ₃ F₅ MW: 194.1 BP: 62–63 ° 196916-5G
00 mg	2,3,4,5,6-P C ₈ H ₃ F ₅ MW: 194.1 BP: 62–63 ° 196916-5G
1 g	257591-100 2,3,4,5,6-P C ₈ H ₃ F ₅ MW: 194.1 BP: 62–63 ° 196916-56
	MW: 194.1 BP: 62–63 ° 196916-5G
	C ₈ H₃F₅ MW: 194.1 BP: 62–63 ° 196916-5G
	C ₈ H₃F₅ MW: 194.1 BP: 62–63 ° 196916-5G
	MW: 194.1 BP: 62–63 ° 196916-5G
	BP: 62–63 ° 196916-5G
	196916-5G
5 g	196916-5G 196916-250
_	196916-250
_	
	Tetrafluoro
-	C ₈ F ₄ O ₃
F-(_)CH	
	MP: 94–96
1 g	
10 g	339016-1G
	339016-5G
	Tetrafluoro
	T_{7} C ₈ H ₂ F ₄ O ₄
FF	MW: 238.0
	MP: 275–2
25 mL	104418-1G
	104418-5G
	3-(Trifluoro
	C ₉ H ₇ F ₃
	MW: 172.1
	BP: 64.5 °C
5 0	266602.16
	366692-1G
20 9	For haloger
6	index polyn
	Devices tec
	reference c
1 g	
5	
2	
	R
	H₂C=<
	- <u>-</u> 0-1
	0
R	
н	
	$ \begin{array}{c} 1 \text{ g} \\ 10 \text{ g} \\ \qquad \qquad$

$C_{15}H_{10}F_6O_2$	F ₃ C, CF ₃
336.23	
MP: 160–163 °C (lit.)	o L
257591-5G	5 g
257591-25G	25 g
257591-100G	100 g
2,3,4,5,6-Pentafluorostyrene,	99%
C ₈ H ₃ F ₅	F F au
MW: 194.1	F CH2
BP: 62–63 °C (50 mm Hg) (lit.)	F F
196916-5G	5 g
196916-25G	25 g
Tetrafluorophthalic anhydride	e, 97%
$C_8F_4O_3$	F O
MW: 220.08	ry y o
MP: 94–96 °C (lit.)	F
339016-1G	F 01g
339016-5G	5 g
555010 50	
Tetrafluoroterephthalic acid, 9	97%
$C_8H_2F_4O_4$	
MW: 238.09	
MP: 275–277 °C (dec.) (lit.)	
104418-1G	1 g
104418-5G	5 g
2 (Trifler and the light many of	0/
3-(Trifluoromethyl)styrene, 99	1%
C₃H ₇ F₃ MW [.] 172 15	
C₃H⁊F₃ MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.)	
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.)	1-
MW: 172.15	1 g
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G	1 g t result in high and low refractive
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers tha	t result in high and low refractive
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers tha index polymers, see the Advance	t result in high and low refractive red Polymers for Electronic/Optical
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers tha index polymers, see the Advance	t result in high and low refractive red Polymers for Electronic/Optical
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers that index polymers, see the Advance Devices technical guide. Request	t result in high and low refractive red Polymers for Electronic/Optical
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers that index polymers, see the Advance Devices technical guide. Request	t result in high and low refractive red Polymers for Electronic/Optical
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers that index polymers, see the Advance Devices technical guide. Request	t result in high and low refractive red Polymers for Electronic/Optical
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers that index polymers, see the Advance Devices technical guide. Request	t result in high and low refractive red Polymers for Electronic/Optical
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers tha index polymers, see the <i>Advanc</i> <i>Devices</i> technical guide. Reques reference code GGE.	t result in high and low refractive red Polymers for Electronic/Optical
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers tha index polymers, see the <i>Advanc</i> <i>Devices</i> technical guide. Reques reference code GGE.	t result in high and low refractive red Polymers for Electronic/Optical
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers that index polymers, see the Advance Devices technical guide. Request	t result in high and low refractive red Polymers for Electronic/Optical
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers tha index polymers, see the <i>Advanc</i> <i>Devices</i> technical guide. Reques reference code GGE.	t result in high and low refractive red Polymers for Electronic/Optical t your free copy at matsci@sial.com
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers tha index polymers, see the Advance Devices technical guide. Request reference code GGE.	t result in high and low refractive red Polymers for Electronic/Optical t your free copy at matsci@sial.com Quantity
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers tha index polymers, see the Advance Devices technical guide. Request reference code GGE.	t result in high and low refractive red Polymers for Electronic/Optical t your free copy at matsci@sial.co
NW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers tha index polymers, see the Advanc Devices technical guide. Reques reference code GGE. R'	t result in high and low refractive red Polymers for Electronic/Optical t your free copy at matsci@sial.com Quantity 470961-5ML
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers that index polymers, see the Advance Devices technical guide. Request reference code GGE. \mathbf{R}' $\mathbf{CF}_2\mathbf{CF}_2\mathbf{CF}_3$	t result in high and low refractive red Polymers for Electronic/Optical t your free copy at matsci@sial.com Quantity 470961-5ML 470961-25ML
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers that index polymers, see the Advance Devices technical guide. Request reference code GGE. \mathbf{R}' $\mathbf{CF}_2 \mathbf{CF}_2 \mathbf{CF}_3$	t result in high and low refractive red Polymers for Electronic/Optical t your free copy at matsci@sial.com Quantity 470961-5ML 470961-25ML 474487-5ML
MW: 172.15 BP: 64.5 °C (40 mm Hg) (lit.) 366692-1G For halogenated monomers tha index polymers, see the Advance Devices technical guide. Request reference code GGE. \mathbf{R}' $\mathbf{CF}_2\mathbf{CF}_2\mathbf{CF}_3$ $\mathbf{CH}_2\mathbf{CH}_2(\mathbf{CF}_2)_7\mathbf{CF}_3$	t result in high and low refractive red Polymers for Electronic/Optical t your free copy at matsci@sial.com Quantity 470961-5ML 470961-25ML 474487-5ML 474487-25ML

Order:

1.800.325.3010

Technical Service:

For questions, product data, or new product suggestions, please contact the Materials Science team at matsci@sial.com.

Н

 CH_2CH_3

369144-1G

369144-5G

421480-10ML 421480-50ML

Н

 CH_3

CF₃

(CF₂)_nCF₃, n ~ 7–8

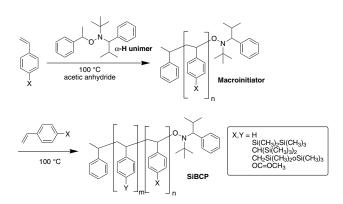
Etch-Resistant Block Copolymers

Prof. Padma Gopalan

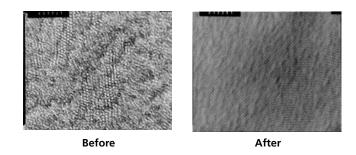
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI

Prof. Shu Yang

Department of Materials Science and Engineering University of Pennsylvania, Philadelphia, PA


Introduction

Block copolymers offer a means of combining the desirable characteristics of different polymers in a new hybrid material. Polymers consisting of hydrophobic and hydrophilic blocks, for example, can be used to encapsulate organic molecules and deliver them into aqueous media. There has been tremendous interest in the self-assembly of block copolymers in nanoscale dimensions, especially in thin-film configuration.


Conventional lithography has its limitations when features of less than 30 nm are desired. Accessibility to a wide range of periodic structures with feature sizes less than 30 nm make block copolymers attractive as templates for nanopatterning.¹⁻³ Most of the literature approaches use selective ozonolysis or preferential staining of one block with heavy metals to increase etch selectivity between the blocks. Often, an intermediate silicon nitride (SiN) layer and selective etching of one block over another is required for successful pattern transfer. In general, the use of organic block copolymers is limited at high temperatures because of low thermal/mechanical stabilities. Thus, direct patterning of semiconductors that requires high growth temperature (>500 °C) using organic block copolymers as templates is nearly impossible.

It has been well established that incorporation of silicon (at least 10 wt %) in resist polymers provides improved oxygen–RIE (reactive ion etching) etch resistance. When exposed to oxygen plasma, the silicon-containing polymers are oxidized to silicon oxide that is stable in an O_2 environment. The high etch resistance to oxygen plasma compared to organic polymers makes silicon-containing polymers favorable as bilayer resists to pattern high-aspect ratio structures and to create nanoporous ceramic thin films in a variety of morphologies.^{4–8} In addition, silicon oxide has high thermal and mechanical stability at a temperature greater than 500 °C, making it a long-time dielectric in microchip fabrication. Thus, the possibility of combining acid labile groups and silicon-containing groups in block copolymers offers a new route to directly pattern nanostructured semiconductors.

As the synthesis of silicon-containing block copolymers is quite challenging using traditional living anionic polymerization, post functionalization of polymers is often used to incorporate silicon. Recent advances in controlled living free-radical polymerization (LFRP),^{9–11} including nitroxide-mediated radical polymerization (NMRP), atom transfer radical polymerization (ATRP), and reversible addition fragmentation chain transfer (RAFT), make it

Scheme 1. Synthesis of macroinitiators and SiBCPs by LFRP at 100 °C.

Figure 1. Transmission electron micrograph (TEM) images of $PAcOSt-PSi_2St$ (21/79 v/V) before and after O_2 plasma for 10 minutes, showing intact cylindrical morphology.

possible to design and synthesize a variety of block copolymers with novel functionalities. The LFRP procedures in general are easier to carry out as they are tolerant to a variety of functionalities and do not require stringent purification of the starting materials, unlike living anionic or cationic polymerization. We had recently applied NMRP towards, (i) the synthesis of narrow dispersed silicon-containing homopolymers from three kinds of silicon-containing styrenic monomers, including 4-(pentamethyldisilyl)-styrene (Si₂St), 4-(bis(trimethylsilyl)methyl)styrene (Si₂-CSt), and 4-(pentamethyldisiloxymethyl) styrene (OSi₂-St) (Scheme 1), each containing two silicon atoms to enhance the etch selectivity, and (ii) the synthesis of block copolymers from silicon-containing styrenic monomers with styrene and acid labile acetoxystyrene by sequential monomer addition using an nitroxide unimer initiator. By optimizing conditions such as solvent polarity, temperature of polymerization, and the monomer addition sequence, welldefined narrow dispersed silicon-containing block copolymers were synthesized from the above monomers. Both TEM (transmission electron microscopy) and SAXS (small angle X-ray scattering) data showed that these polymers formed cylindrical, lamellae, or disordered structures depending on the volume ratio between the blocks and their molecular weights. When the silicon-containing block was the major phase and silicon content was greater than 12 wt %, block copolymer morphology and its domain size were well maintained under exposure to oxygen plasma¹² (Figure 1).

Ε

sigma-aldrich.co

Synthetic access to novel silicon-containing block copolymers via LFRP enables potential applications such as (1) growth of nanostructured semiconductor crystals at high temperatures, (2) formation of nanoporous ceramic films, or (3) creation of hierarchical hybrid nanostructures by combining photolithography and self-assembly of photosensitive siliconcontaining block copolymers. References: (1) Park, M. et al. Science **1997**, 276, 1401. (2) Black, C. T. et al. Appl. Phys. Lett. **2001**, 79, 409. (3) Kim, H. C. et al. Adv. Mater. **2001**, 13, 795. (4) Gabor, A. H. et al. Chem. Mater. **1994**, 6, 927. (5) Zharov, I. et al. Chem. Mater. **2002**, *14*, 656. (6) Bowden, M. et al. J. Photopolym. Sci. Technol. **2003**, *16*, 629. (7) Avgeropoulos, A. et al. Chem. Mater. **1998**, *10*, 2109. (8) Chan, V. Z.-H. et al. L. Science **1999**, 286, *1716*. (9) Matyjaszewski, K. Advances in Controlled/Living Radical Polymerization; American Chemical Society: Washington, DC, 2003; Vol. 854, p 2. (10) Hawker, C. J. J. Am. Chem. Soc. **1994**, *116*, 1185. (11) Benoit, D. et al. J. Am.Chem. Soc. **1999**, *121*, 3904. (12) Fukukawa, K. et al. Macromolecules **2005**, *38*, 263.

Silicone-Containing Monomers

All hot de la stille de OTO/

Allyltriethoxysilane, 97%		Trimethylsilyl me
C₂H₂₀O₃Si	H₃C−∖	C ₇ H ₁₄ O ₂ Si
MW: 204.34		MW: 158.27
BP: 78 °C (21 mm Hg) (lit.)	° ↓ ↓ O∕CH₃	BP: 51–51.5 °C (2
A36301-5G	5 g	347493-25G
A36301-25G	25 g	347493-100G
Diphenylsilanediol, 95%		Vinyltrimethoxy
$C_{12}H_{12}O_2Si$		C ₅ H ₁₂ O ₃ Si
MW: 216.31		MW: 148.23
D213705-25G	25 g	BP: 123 °C (lit.)
D213705-100G	100 g	235768-5ML
2213703 1000	100 g	235768-100ML
Octadecyltrichlorosilane, 90+%		235768-500ML
C ₁₈ H ₃₇ Cl₃Si		
MW: 387.93		1,4-bis(dimethyl
BP: 223 °C (10 mm Hg) (lit.)		mixture of endo
		C ₂₈ H ₄₂ Si ₂
104817-25G	25 g	MW: 434.8
104817-100G	100 g	BP: 314 °C (lit.)
104817-500G	500 g	
		523607-5ML
Poly(dimethylsiloxane), vinyl terminated,		
viscosity 1,000 centistokes		Hexamethyl-1,5-
BP: >93 °C (lit.)		mixture of endo
433012-100ML	100 mL	C ₂₄ H ₄₄ O₂Si₃ MW: 448.86
433012-500ML	500 mL	
Trichlorovinylsilane, 97%		
C2H3Cl3Si		523593-1ML
MW: 161.49	CI	523593-5ML
MP: –95 °C (lit.)	CI-Si-	525555 51112
BP: 90 °C (lit.)	CI CH2	For an up-to-da
104876-5G	5 g	nanomaterials \
104876-100G	100 g	
104876-500G	500 g	

MW: 158.27 BP: 51–51.5 °C (20 mm Hg) (lit.)	H ₃ C, O H ₃ C-Şi ^{,O} CH ₂ CH ₃
	H ₃ C O
347493-25G	25 g
347493-100G	100 g
Vinyltrimethoxysilane, 98%	
C ₅ H ₁₂ O ₃ Si	
MW: 148.23	H ₃ C H ₂ C-Si
BP: 123 °C (lit.)	H₃C
235768-5ML	5 mL
235768-100ML	100 mL
235768-500ML	500 mL
	1
MW: 434.8	CH ₃ CH ₃ CH ₃ CH ₃
MW: 434.8	CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3
MW: 434.8 BP: 314 °C (lit.) 523607-5ML Hexamethyl-1,5-bis(2-(5-norborn mixture of endo and exo	5 mL
C ₂₈ H ₄₂ Si ₂ MW: 434.8 BP: 314 °C (lit.) 523607-5ML Hexamethyl-1,5-bis(2-(5-norborn mixture of endo and exo C ₂₄ H ₄₄ O ₂ Si ₃ MW: 448.86	5 mL
MW: 434.8 BP: 314 °C (lit.) 523607-5ML Hexamethyl-1,5-bis(2-(5-norborn mixture of endo and exo C ₂₄ H ₄₄ O ₂ Si ₃	5 mL
MW: 434.8 BP: 314 °C (lit.) 523607-5ML Hexamethyl-1,5-bis(2-(5-norborn mixture of endo and exo C ₂₄ H ₄₄ O ₂ Si ₃	5 mL en-2-yl)ethyl)trisiloxane,

Styrene Monomers

Monomer	R	Quantity	Monomer	R	Quantity
Styrene, reagentplus, 99+%	Н	240869-5ML 240869-100ML	4-Chlorostyrene, 97%	CI	C71203-10G C71203-50G
4-Bromostyrene, 98%	Br	124141-1G 124141-10G 124141-25G	4-Acetoxystyrene, 96%	0 H₃C-C-O	380547-5ML 380547-25ML

For styrenic and other vinyl monomers, use our advanced sub-structure search: sigma-aldrich.com.

ler: 1.800.325.3010 Technical Service: 1.800.231.8327

ALDRICH[®]

0 r d

Bioactive Hydrogels

Anthony Guiseppi-Elie ABTECH Scientific, Inc. Richmond, VA

The first report of the synthesis of composite materials comprising conducting polymers and hydrogels was in 1994 by Wallace et al.¹ Their objective was to enhance the porosity and ion-transport properties of hydrogels for controlled drug

delivery through electrochemically stimulated release of analytes. Since then, the electrochemical and oxidative polymerization of pyrrole, aniline, and thiophene and their derivatives within hydrogel hosts, such as polyacrylamide, poly(acrylic acid), chitosan, and poly(HEMA) have been routinely accomplished for biosensor applications and to achieve voltage-stimulated or controlled release. There have also been several studies conducted on the fabrication of polymer blends of hydrogels, such as poly(methyl methacrylate) (PMMA), poly(vinyl methyl ether) (PVME), poly(4-vinylpyridine),² and poly(2-hydroxyethyl methacrylate) (p(HEMA)), primarily for the construction of artificial muscles.^{3,4} With hydrogels, high degrees of hydration (ca. 90 %) could be reversibly achieved along with biocompatibility, good refractive index matching with water, and relative ease of molecular engineering. In general, the conducting polymer component of these composites retains their electroactive properties.

Brahim et al.⁵ have fabricated bioactive polypyrrole-p(HEMA) composites to function as sensing membranes for clinically important amperometric biosensors. A monomer cocktail containing, among other components, the relevant methacrylate monomers, pyrrole or aniline, and photoinitiator was spin-cast onto microfabricated electrodes and first irradiated by UV to effect polymerization of the hydrogel components. This was immediately followed by potentiostatic electropolymerization of the pyrrole/aniline monomer in a phosphate-buffered potassium chloride solution saturated with further monomer. Amperometric enzyme biosensors for the detection of glucose, cholesterol, and galactose were demonstrated, each possessing extensive linear dynamic response ranges, high sensitivities, and prolonged storage stabilities.⁶

Of particular recent interest is the development of **bioactive** (containing biologically active moieties such as bioactive peptides, growth factors, enzymes and the like) and **biosmart** (responsive to biologically derived external stimuli) electroconductive hydrogels for implant biocompatibility. A novel polymer composite material consisting of a water-dispersed complex of polypyrrole doped with polystyrenesulfonate and embedded in polyacrylamide hydrogel was prepared and evaluated as a matrix for enzyme immobilization.⁷ The enzyme glucose oxidase was physically entrapped in the polymer by inclusion in the aqueous phase during emulsion polymerization. The resulting bioactive microparticles (3.5–7.0 µm diameter) were cast onto platinum electrodes and the polymer-modified electrodes used as amperometric glucose biosensors. This configuration displayed rapid response times and efficient screening of interferents.

For implantable biosensing applications, the synthesis of hydrogel composite polymers consisting of cross-linked p(HEMA) with incorporated polypyrrole and/or polyaniline chains are rendered "bioactive" by the covalent immobilization of oxidoreductase enzymes. Enzymes were first "monomerized" by heterobifunctional coupling of the amines of the lysine residues of

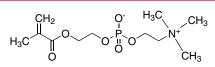


Figure 1. Strucutre of 2-methacryloyloxyethyl phosphorylcholine

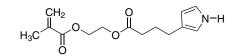


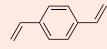
Figure 2. Structure of 2-methacrylooyloxyethyl pyrrolylbutyrate

the enzyme (typically 1:2) with acryloyl (polyethylene glycol)₁₁₀ N-hydroxy succinamide ester (Acryl-PEG-NHS). This allowed the covalent immobilization of the tethered oxidoreductase enzyme within the hydrogel milieu. To provide for stabilization of the immobilized enzymes, poly(ethylene glycol)200 monomethacrylate (PEGMA) was also included in the monomer cocktail at 0.5 mol %. Together these components allowed photolithographically defined, spin-cast membranes formed on microlithographically defined electrodes to recognize and amperometrically respond to the enzyme's substrate and achieve approximately one year of retained enzyme activity (ca. 80%). For implant biocompatibility, the synthesis of the monomer 2-methacryloyloxyethyl phosphorylcholine (MPC) (Figure 1) was accomplished by the coupling of HEMA with 2-chloro-2-oxo-1,3,2-dioxaphospholane (COP).8 When incorporated into the hydrogels at the level of ca. 5-10 mol %, this monomer conferred nonthrombogenicity, reduced protein adsorption, and supported cell viability. Mimicking the zwitterionic head group of the outer leaflet of cell membranes, phosphotidyl choline, the phosphorylcholine moiety confers the molecular equivalent of "stelt" to the polymer when the biosensor is implanted. When cultured with muscle fibroblasts and endothelial cells, these highly porous hydrogel composites support the migration and mobility of cells within its 3-D network⁹; a property that will render these materials appropriate for the fabrication of nerve electrodes and cellular interfaces as the polymer mimics the biological structures that enable cells to grow.

One challenge faced by the use of electroactive polymers as components of hydrogels for mammalian implantation is the potential toxicity. Early work has established polypyrrole as biobenign. However, to address this issue, bi-functional monomers of pyrrole such as 2-methacrylooyloxyethyl pyrrolylbutyrate (MPB) (**Figure 2**) and aniline that may be UV-polymerized, and hence, covalently coupled into the hydrogel network and also oxidatively polymerized with imbibed free pyrrole or aniline monomer to form the electroactive polymer component were developed. In this way, an interpenetrating network of the electroactive polymer is formed within the preformed hydrogels network that serves as the reactor. Studies are ongoing to evaluate the potential cytotoxicity and biocompatibility of these polymers.

References: (1) Small, C. J. et al. *Polymer Gels and Networks* **1997**, *5*, 251. (2) Asberg, P.; Ingana, O. Biosens. Bioelectron. **2003**, *19*, 199. (3) Pich, A. et al. *Polymer* **2002**, *43*, 5723. (4) Douglass, P. M, et al. *Soc. Automotive Eng.* **2000**, 1. (5) Brahim, S. et al. *Biosens. Bioelectron.* **2002**, *17*, 53. (6) Brahim, S. et al. *Electroanalysis.* **2002**, *14*(9), 627. (7) Rubio Retama, J. et al. *Bioselectron.* **2004**, *20*, 1111. (8) Brahim, S. et al. *Microchimica Acta* **2003**, *143*, 123. (9) Abraham, S et al. *Biomaterials* **2005**, *26*(23), *4767*. (10) Abraham, S.; Guiseppi-Elie, A. *Biomaterials* **2006**, submitted for publication.

8


Ε

sigma-aldrich.co

Benzyl 2-ethyl acryla	te, 99% 🔹 🔊	2-Chloro-1,3,2-dio	xaphospholane-2-oxide	Pyrrole, 98%	
C ₁₂ H ₁₄ O ₂		C ₂ H ₄ ClO ₃ P		C_4H_5N	
MW: 190.24	H ₂ C= CH ₃	— MW: 142.48	0.0	MW: 67.09	
	- Fo~		P [™]	MP: -23 °C (lit.)	NH
	0 -	BP: 89–91 at 0.8 m	m Ha (lit)	BP: 131 °C (lit.)	
589136-250MG	250 mg				
		377953-1G	1 g	131709-25ML	25 mL
Benzyl 2-propylacryla	ate, 99% 🔹 🔊	377953-5G	5 g	131709-100ML	100 mL
C ₁₃ H ₁₆ O ₂	_CH₃			131709-500ML	500 mL
MW: 204.26	H ₂ C=	2-Ethylacrylic acid	, 98%		
	Lo~/	$_{\rm I}$ C ₅ H ₈ O ₂	/—CH₂	2-Vinylpyridine, 97	%
	0	MW: 100.12	H₂C≕	C_7H_7N	
590126-250MG	250 mg	BP: 176 °C (lit.))— ОН О	MW: 105.14	
				BP: 79–82 °C (29 mr	n Hg) (lit.)
1,6-Bis(p-acetoxycarb	oonylphenoxy) 🛛 🔊	589128-250MG	250 mg		
hexane, 97%				132292-5ML	5 mL
C ₂₄ H ₂₆ O ₈		Ethyl 2-propyl acr	ylate, 99%	132292-100ML	100 mL
MW: 442.46		C ₈ H ₁₄ O ₂		132292-500ML	500 mL
		MW: 142.2			
657174-1G	1 g	BP: 141 °C (lit.)		4-Vinylpyridine, 95	%
				C_7H_7N	
1,3-Bis(4-carboxyphe	noxy)propane, 🖪	590118-250MG	250 mg	MW: 105.14	N
97 %				BP: 62–65 °C (15 mr	n Hg) (lit.) ``````````_
$C_{17}H_{16}O_{6}$		Glycosyloxyethyl	methacrylate, 💦 📧		
MW: 316.31 %		9 5% (w/v) solution	i in ethanol	V3204-5ML	5 mL
MP: 310 °C(lit.) но	_^o^_o^_/_	он С ₁₂ Н ₂₀ О ₈		V3204-100ML	100 mL
		MW: 292.28		V3204-500ML	500 mL
655538-5G	5 g				
	3		но он Сн ₃	1-Vinyl-2-pyrrolidin	ione, 99+%
1,6-Bis(p-carboxyphe	noxy)hexane, 🛛 🔊	EW		C₅H₀NO	0
90%		659576-25ML	25 mL	MW: 111.14	L.
$C_{20}H_{22}O_{6}$				BP: 92–95 °C (11 mr	n Hg) (lit.)
MW: 358.39		2-Propylacrylic aci	id, 99%		
		$C_{6}H_{10}O_{2}$	/CH2CH3	V3409-5G	5 g
655546-5G	5 g	114.14		V3409-250G	250 g
		165-188 °C (lit.)	<i>—</i> он	V3409-1KG	1 kg
			5	V3409-18KG	18 kg
		591009-100MG	100 mg		
		591009-1G	1 g	Three grades of HE	MA (2-hydroxyethyl
			5	methacrylate) are a	vailable: 97%
				(128635), 98% (52	5464), 99+%
				(477028).	

For a comprehensive list of hydrogel hosts such as polyacrylamide, poly(acrylic acid), chitosan and poly(HEMA), as well as functionalized PEGs (linear, 4-arm and 6-arm), visit sigma-aldrich.com/biocomp.

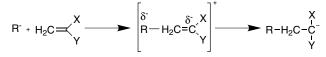
Cross-linkers

Cross-linking is the formation of chemical links between molecular chains to form a three-dimensional network of connected molecules. The strategy of covalent cross-linking is key to the formation of hydrogels. It is also used in several other technologies of commercial and scientific interest to control and enhance the properties of the resulting polymer system or interface, such as thermosets and coatings.

DVB, 85% (535583)

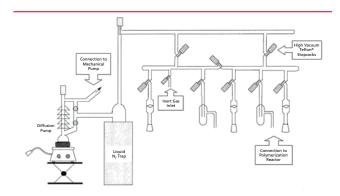
For a complete list of cross-linkers, visit us at sigma-aldrich.com/biocomp and scroll down to cross-linkers.

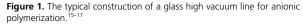
Anionic Polymerization


Prof. Roderic P. Quirk and Ms. Manuela Ocampo Maurice Morton Institute of Polymer Science The University of Akron, Akron, OH

Living anionic polymerization, especially using alkyllithium initiators, has been demonstrated to be a convenient and useful method to make well-defined polymers with low degrees of compositional heterogeneity and with control of the major structural variables that affect polymer properties.^{1,2} Living polymerizations are chain-reaction polymerizations that proceed in the absence of the kinetic steps of chain termination and chain transfer. For a living polymerization, one initiator molecule generates one polymer molecule; thus, it is possible to calculate and control the number average molecular weight (M_n) of the final polymer via the stoichiometry of the reaction using the following relationship.

$M_n = q$ of monomer consumed/moles of initiator


Given a comparable or faster rate of initiation relative to propagation, it is possible to obtain narrow molecular weight distribution polymers, i.e., $M_w/M_n \leq 1.1$.³ Due to the absence of termination and transfer steps, the product after complete monomer consumption is a reactive, polymeric organolithium compound. The living nature of alkyllithium-initiated anionic polymerizations using suitable monomers provides versatile methods for the preparation of well-defined block copolymers by sequential addition of monomers,⁴ chain-end functionalized polymers by reaction of the living chain ends with appropriate monomers and/or electrophilic terminating agents^{5,6} and branched polymers by linking reactions with multi-functional linking agents.⁷


The monomers that can be polymerized anionically are classified into two categories: (a) unsaturated monomers with one or more double bonds, such as vinyl (e.g., styrenes, vinylpyridines, alkyl methacrylates), dienes (e.g., isoprene, 1,3-butadiene) and carbonyl-type monomers (e.g., formaldehyde); and (b) heterocyclic monomers (e.g., epoxides, thiiranes, lactones, lactams, and siloxanes). In the case of vinyl monomers, the presence of electronwithdrawing substituents (e.g., X, Y) in the double bond is generally required to stabilize the negative charge that develops in the transition state as shown below.

Organolithium Initiators

Of all alkali metals, lithium is unique in that it exhibits the highest electronegativity, the smallest covalent and ionic bond radii, along with low-lying, unoccupied p-orbitals available for bonding.^{8,9} Organolithium compounds are unique among organoalkali compounds in exhibiting properties characteristic of both covalent and ionic compounds. Thus, they are aggregated in solution, in the solid state and in the gas phase, and they are generally soluble in hydrocarbon solution. In general, the initiation of anionic polymerization of styrene and diene monomers is effected with alkyllithium compounds such as sec-butyllithium (**195596**) and

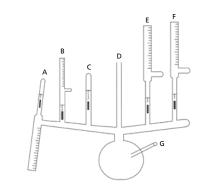


Figure 2. General set-up for a glass polymerization reactor.

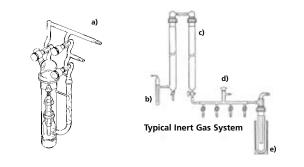


Figure 3. Aldrich products a) Z544787 b) Z173053 c) Z174254 d) Z174432 e) Z220418

n-butyllithium (**186171, 230707, 230715, 302104**, and **302120**) in hydrocarbon solution. Under these conditions, the unique ability of organolithium compounds to effect 1,4-enchainment of 1,3-dienes is achieved.^{1,10} The concentrations of solutions of active organolithium compounds can be determined using the Gilman double titration method.¹¹

Experimental Methods

Due to the reactivity of organolithium compounds and other carbanionic species toward impurities such as oxygen, moisture or carbon dioxide,¹² it is necessary to exclude these contaminants from the reaction environment by the use of an inert gas atmosphere^{13,14} or high vacuum techniques.^{15–17}

Polvmerization

Ε

sigma-aldrich.co

Anionic Polymerization

Order: 1.

800.3

25.3

8010

Technical

Service:

ALDRICH[®] 1.800.231.8327

High Vacuum Techniques The use of high vacuum techniques provides the most effective experimental method to exclude impurities from the reaction system.¹⁵⁻¹⁷ In order to attain high vacuum, the combination of a mechanical pump and an oil diffusion pump (**Z220418**) is used in conjunction with a two-stage glass manifold as shown in **Figure 1**.

In order to achieve the desired levels of purity for controlled anionic polymerization, all monomers, reactants, and solvents should be purified, dried, and degassed, preferably on the vacuum line. Solvents are distilled directly into the requisite glass reactors (**Figure 2**) via **D** followed by flame sealing from the vacuum line. Ampules **B**, **E**, and **F** contain monomers or functionalizing agents. Ampule **C** contains a terminating agent such as degassed methanol. Ampule **A** is equipped with a degassed methanol tube, and it is used to remove a base sample of the living polymer.

Schlenk Line and Glove Box Techniques are often suitable for carrying out many living anionic polymerization procedures. Alkyllithithium-initiated polymerizations are somewhat forgiving in the sense that one can add a calculated excess of initiator to clean the reactor/solvent/monomer system of reactive impurities. See **Figure 3** for representative Schlek Line Glassware. For representative and the Sigma-Aldrich glass center, visit sigmaaldrich.com/glass.

Safety Considerations

Vacuum traps should be vented while warming because of the possibility of trapped, liquefied gases. Hydrocarbon solutions of alkyllithium compounds are air- and moisture-sensitive; they should be either handled under an inert atmosphere or using syringes and recommended procedures for handling air-sensitive compounds.¹³ Carbon dioxide extinguishers should not be used because RLi

compounds and many other organometallic compounds react with carbon dioxide exothermically. An all-purpose fire extinguisher, or one designed specifically for combustible metals, should be available when working with these organometallic compounds and alkali metals.¹⁸

References: (1) Hsieh, H. L.; Quirk, R. P. Anionic Polymerization: Principles and Practical Applications; Dekker: New York, 1996. (2) Quirk, R.P. Anionic Polymerization. In Encyclopedia of Polymer Science and Technology Kroschwitz, J. I., Ed.; 3rd ed.; Wiley-Interscience: New York, 2003; Vol. 5, p 111. (3) Fetters, L. J. Monodisperse Polymers. In Encyclopedia of Polymer Science and Engineering Kroschwitz, J. I., Ed.; 2nd ed.; Wiley-Interscience: New York, 1985; Vol. 2, p 478. (4) Hadjichristidis, N.; Pispas, S.; Flouds, G. A. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications; Wiley-Interscience: New York, 2003. (5) Quirk, R. P. Anionic Synthesis of Polymers with Functional Groups. In Comprehensive Polymer Science, First Supplement; Aggarwal, S. L., Russo, S., Eds.; Pergamon Press: Oxford, 1992; p 83. (6) Hirao, A.; Hayashi, M. Acta Polym. 1999, 50, 219. (7) Hadjichristidis, N. et al. Chem. Rev. 2001, 101, 3747. (8) Wardell, J. L. Alkali Metals. In Comprehensive Organometallic Chemistry: The Synthesis, Reactions and Structures of Organometallic Compounds; Wilkinson, G., Gordon, F., Stone, A. Abel, E. W., Eds.; Pergamon Press: Oxford; 1982; Vol. 1, p 43. (9) Sanderson, R. T. Chemical Periodicity; Reinhold: New York; 1960. (10) Bywater, S. In Comprehensive Polymer Science; Eastmond, G. C., Ledwith, A., Russo, S., Sigwalt, P., Eds.; Chain Polymerization I; Pergamon Press: Elmsford, New York, 1989, Vol. 3, p. 433. (11) Gilman, H.; Cartledge, F. K. J. Organomet. Chem. 1964, 2, 447. (12) Wakefield, B. J. The Chemistry of Organolithium Compounds; Pergamon Press: New York; 1974. (13) Shriver, D. F.; Drezdzon, M. A. The manipulation of Air-Sensitive Compounds; Wiley: New York, 1986. (Cat. No. Z558486) (14) Ndoni, S.; et al. Rev. Sci. Instrum. 1995, 66, 1090. (15) Morton, M; Fetters, L. J. Rubber Chem. Technol. 1975, 48, 359. (16) Hadjichristidis, N. et al. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3211. (17) Uhrig, D; Mays, J. W. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 6179. (18) Wietelmann, U.; Bauer, R. J. In Ullmann's Encyclopedia. Industrial Inorganic Chemicals and Products; Wiley-VCH Verlag: Weinheim, Germany; 1998; Vol. 4, p. 2899.

For the manipulation of air-sensitive compounds, see also Aldrich Technical Bulletins AL-134, AL-136, AL-164, and AL-166.

Monomers for Anionic Polymerization

		H ₂ C=
	х	Y
Vinylidene chloride, 99% 163023-100G	н	CI
<u>163023-500G</u> Acrylic acid, 99%		
147230-50 147230-500 147230-500G	Н	о С-он
Methyl acrylate, 99% M27301-5ML M27301-250ML	Н	О " С-ОСН ₃
Ethyl acrylate, 99% E9706-5ML E9706-100ML	Н	0 Ċ−0∕∕CH₃
Butyl acrylate, 99+% 234923-5ML 234923-100ML	Н	0 C-0 CH3
2-Hydroxyethyl acrylate, 96% 292818-5ML 292818-250ML	Н	о с_о∕_он
2-Hydroxy-3-phenoxypropyl acrylate 407364-100ML 407364-500ML	Н	о с-остобо он
<i>N,N</i> -Dimethylacrylamide, 99% 274135-5ML 274135-100ML 274135-500ML	Н	О С-N _{СН3}
N-lsopropylacrylamide, 97% 415324-10G 415324-50G	Н	О Н СН3 С-о-N СН3 СН3

Υ		
	х	Y
Methacrylic acid, 99%		
155721-5G	CH₃	о С-он
155721-100G	CH3	С–ОН
155721-500G		
Methyl methacrylate, 99%		0
M55909-25ML	CH₃	О С−ОСН₃
M55909-500ML		
Ethyl methacrylate, 99%		
234893-5ML	CH3	о с−о∕~сн₃
234893-100ML	e.,,	C-0 CH3
234893-500ML		
2-Hydroxyethyl methacrylate,	<u> </u>	0 С-0 / ОН
99+%	CH₃	с-о́́Он
128635-5G		
Glycidyl methacrylate, 97%		0
151238-5G 151238-100G	CH₃	° c-o⁄
101200 1000	2	0
151238-500G		
2-Isocyanatoethyl		0
methacrylate, 98% 477060-5ML	CH3	0 0 N=C=0
		000
477060-50ML		
Methyl 2-(bromomethyl)- acrylate, 97%		0
302546-250MG		O C−OCH₃
302546-250101G 302546-1G	CH ₂ Br	0 0013
302546-1G 302546-5G		
302340-30		

For a comprehensive list of acrylete-methacrylete monomers visit sigma-aldrich.com/polymer.

Argentina

SIGMA-ALDRICH DE ARGENTINA, S.A. Tel: 54 11 4556 1472 Fax: 54 11 4552 1698

Australia

SIGMA-ALDRICH PTY., LIMITED Free Tel: 1800 800 097 Free Fax: 1800 800 096 Tel: 612 9841 0555 Fax: 612 9841 0500

Austria

SIGMA-ALDRICH HANDELS GmbH Tel: 43 1 605 81 10 Fax: 43 1 605 81 20

Belgium

SIGMA-ALDRICH NV/SA. Free Tel: 0800-14747 Free Fax: 0800-14745 Tel: 03 899 13 01 Fax: 03 899 13 11

Brazil

SIGMA-ALDRICH BRASIL LTDA. Tel: 55 11 3732-3100 Fax: 55 11 3733-5151

Canada

SIGMA-ALDRICH CANADA LTD. Free Tel: 800-565-1400 Free Fax: 800-265-3858 Tel: 905-829-9500 Fax: 905-829-9292

China

SIGMA-ALDRICH CHINA INC. Tel: 86-21-6386 2766 Fax: 86-21-6386 3966

Czech Republic

SIGMA-ALDRICH S.R.O. Tel: +420 246 003 200 Fax: +420 246 003 291

Denmark

SIGMA-ALDRICH DENMARK A/S Tel: 43 56 59 10 Fax: 43 56 59 05

Finland

SIGMA-ALDRICH FINLAND Tel: (09) 350 9250 Fax: (09) 350 92555

P.O. Box 14508 St. Louis, MO 63178 USA

France

SIGMA-ALDRICH CHIMIE S.à.r.l. Tel appel gratuit: 0800 211 408 Fax appel gratuit: 0800 031 052

Germany

SIGMA-ALDRICH CHEMIE GmbH Free Tel: 0800-51 55 000 Free Fax: 0800-649 00 00

Greece

SIGMA-ALDRICH (O.M.) LTD Tel: 30 210 9948010 Fax: 30 210 9943831

Hungary

SIGMA-ALDRICH Kft Tel: 06-1-235-9054 Fax: 06-1-269-6470 Ingyenes zöld telefon: 06-80-355-355 Ingyenes zöld fax: 06-80-344-344

India

SIGMA-ALDRICH CHEMICALS PRIVATE LIMITED Telephone Bangalore: 91-80-4112-7272 New Delhi: 91-11-4165-4255 Mumbai: 91-22-2570-2364 Hyderabad: 91-40-5584-5488 Fax Bangalore: 91-80-4112-7473 New Delhi: 91-11-4165-4266

Mumbai: 91-22-2579-7589 Hyderabad: 91-40-5584-5466

Ireland

SIGMA-ALDRICH IRELAND LTD. Free Tel: 1800 200 888 Free Fax: 1800 600 222 Tel: 353 1 4041900 Fax: 353 1 4041910

Israel

SIGMA-ALDRICH ISRAEL LTD. Free Tel: 1-800-70-2222 Tel: 08-948-4100 Fax: 08-948-4200

Italy

SIGMA-ALDRICH S.r.I. Telefono: 02 33417310 Fax: 02 38010737 Numero Verde: 800-827018

Japan

SIGMA-ALDRICH JAPAN K.K. Tokyo Tel: 03 5796 7300 Tokyo Fax: 03 5796 7315

Korea SIGMA-ALDRICH KOREA Tel: 031-329-9000 Fax: 031-329-9090

Malaysia

SIGMA-ALDRICH (M) SDN. BHD Tel: 603-56353321 Fax: 603-56354116

Mexico

SIGMA-ALDRICH QUÍMICA, S.A. de C.V. Free Tel: 01-800-007-5300 Free Fax: 01-800-712-9920

The Netherlands

SIGMA-ALDRICH CHEMIE BV Tel Gratis: 0800-0229088 Fax Gratis: 0800-0229089 Tel: 078-6205411 Fax: 078-6205421

New Zealand SIGMA-ALDRICH PTY., LIMITED Free Tel: 0800 936 666 Free Fax: 0800 937 777 Tel: 61 2 9841 0500 Fax: 61 2 9841 0500

Norway SIGMA-ALDRICH NORWAY AS Tel: 23 17 60 60 Fax: 23 17 60 50

Poland SIGMA-ALDRICH Sp. z o.o. Tel: 061 829 01 00 Fax: 061 829 01 20

Portugal

SIGMA-ALDRICH QUÍMICA, S.A. Free Tel: 800 202180 Free Fax: 800 202178 Tel: 21 9242555 Fax: 21 9242610

Russia

SIGMA-ALDRICH RUS, LLC Tel: +7 (095) 621-5828/6037 Fax: +7 (095) 975-4792

Singapore

SIGMA-ALDRICH PTE. LTD. Tel: 65-67791200 Fax: 65-67791822

South Africa

SIGMA-ALDRICH SOUTH AFRICA (PTY) LTD. Free Tel: 0800 1100 75 Free Fax: 0800 1100 79 Tel: 27 11 979 1188 Fax: 27 11 979 1119

Spain

SIGMA-ALDRICH QUÍMICA S.A. Free Tel: 900 101376 Free Fax: 900 102028 Tel: 91 661 99 77 Fax: 91 661 96 42

Sweden

SIGMA-ALDRICH SWEDEN AB Tel: 020-350510 Fax: 020-352522 Outside Sweden Tel: +46 8 7424200 Outside Sweden Fax: +46 8 7424243

Switzerland

SIGMA-ALDRICH CHEMIE GmbH Swiss Free Call: 0800 80 00 80 Tel: +41 81 755 2828 Fax: +41 81 755 2815

United Kingdom

SIGMA-ALDRICH COMPANY LTD. Free Tel: 0800 717181 Free Fax: 0800 378785 Tel: 01747 833000 Fax: 01747 833313 SAFC (UK): 01202 712305

United States

SIGMA-ALDRICH P.O. Box 14508 St. Louis, Missouri 63178 Toll-free: 800-325-3010 Call Collect: 314-771-5750 Toll-Free Fax: 800-325-5052 Tel: 314-771-5765 Fax: 314-771-5757

Internet

sigma-aldrich.com

Order/Customer Service 1-800-325-3010 • Fax 1-800-325-5052 Technical Service 1-800-325-5832 • sigma-aldrich.com/techservice

Development/Bulk Manufacturing Inquiries SAFC 1-800-244-1173

SIGMA-ALDRICH

World Headquarters • 3050 Spruce St., St. Louis, MO 63103 • (314) 771-5765

Accelerating Customers' Success through Leadership in Life Science, High Technology and Service

The SIGMA-ALDRICH Group 💥 SIGMA 🙆 ALDRICH 🛛 🖉 Fluka 🛛 🖉 SAFC 🖉 SUPELCO 🖉 🖉

©2006 Sigma-Aldrich Co. All rights reserved. SIGMA, ²/₈, SAFC, **SNFC**, SIGMA-ALDRICH, ²/₈, ISOTEC, ALDRICH, ²/₉, FLUKA, ⁴/₉, and SUPELCO are trademarks belonging to Sigma-Aldrich Co. and its affiliate Sigma-Aldrich Biotechnology LP, Riedel-de Haën⁺: trademark under license from Riedel-de Haën GmbH. Sigma products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing sign. Fillon is a registered trademark of DuPont. Prices subject to change.

IRM 00589-503403 0036