# Material Matters



## Alternative Energy

Generation and Storage

<image>

Alternative Energy—the way to go

Light-Driven Generation of Hydrogen

Polymer Electrolyte Membrane Fuel Cells

Polymer-based Materials for Printed Electronics

Advanced Lithium Ion Batteries

SIGMA-ALDRICH®

## Introduction

Welcome to the fourth issue of *Material Matters*<sup>™</sup> for 2008. focused on 'Alternative Energy'.

Alternative energy may be broadly defined as energy generated in a way that does not deplete natural resources or harm the environment. It is used as an "alternative" to fossil fuels and other non-renewable energy sources such as coal, oil and natural gas. It is common knowledge that the use of fossil fuels contributes to global warming through the emission of carbon dioxide, and also pollutes the air, water, and soil. In addition, fossil energy sources are not sustainable, i.e. while global energy demand continues to grow, the world reserves of coal, oil and natural gas are being depleted. Currently, the world energy consumption has exceeded 400 quadrillion BTUs ( $4.2 \times 10^{20}$  J) per year. The United States



Viktor Balema Ph D Materials Science Sigma-Aldrich Corporation

alone uses about one-guarter of the energy produced in the world, with an additional 29% consumed by the European Union, Japan and S. Korea. Every day, the USA needs 20 million barrels of oil, 60 billion cubic feet of natural gas, and 3 million tons of coal to cover its existing energy demand.

One of the ways currently being explored to satisfy growing energy requirements is the conversion of solar energy into electricity. This energy can be immediately used to power a broad variety of tools and devices. It can also be stored in chemical form in hydrogen rich chemical substances such as hydrides, or through the use of lithium ion batteries. The former approach—conversion of solar energy into materials with high hydrogen content such as oil and natural gas—is the way in which fossil fuels formed in nature to begin with; of course that process took millions of years.

This issue of *Material Matters* features four articles that are concerned with different aspects of alternative energy. Researchers at Penn State University highlight conversion of solar energy and water into hydrogen, using a biologically inspired electrochemical process. Hydrogen produced in such a manner could later be used in PEM fuel cells to generate electricity. Material issues in PEM fuel cells are the subject of the article by scientists from the US Department of Energy (US DOE) and the Argonne National Laboratory. Further ways to enable high efficiency solar power and lighting through photochemical generation of energy are discussed by researchers at Plextronics. Finally, scientists affiliated with the Vehicle Technologies Program of the US DOE address materials challenges in advanced lithium ion battery research.

Customary to *Material Matters*, each article in this issue is accompanied by Sigma-Aldrich<sup>®</sup> products helpful in the corresponding type of alternative energy research. The facing page lists the materials categories that you will find in this issue. Please visit Aldrich Materials Science at *sigma-aldrich.com/matsci* for product information. We invite you to send your comments and guestions regarding Material Matters and materials of interest to matsci@sial.com.

#### About Our Cover

The energy of our own star - the sun, is abundant, free and virtually unlimited. Its conversion into electricity, which can be used directly or stored in batteries or energy-rich substances such as hydrogen, offers a perfect way to resolve a vast majority of current and future energy issues. The system that combines biologically inspired Photosystem I, a 1,6-hexanedithiol molecule shown on the cover, and either gold or platinum nanoparticles, represents one of the possible ways to capture and convert solar energy into hydrogen (see article on p. 78) for further use in fuel cells (see article on p. 85) to power homes, offices and a variety of electrical and electronic devices.

## Material Matters Vol. 3 No. 4

Aldrich Chemical Co., Inc. Sigma-Aldrich Corporation 6000 N. Teutonia Ave. Milwaukee, WI 53209, USA

#### **To Place Orders**

| Telephone | 800-325-3010 (USA) |
|-----------|--------------------|
| FAX       | 800-325-5052 (USA) |

#### **Customer & Technical Services**

| Customer Inquiries   | 800-325-3010      |
|----------------------|-------------------|
| Technical Service    | 800-231-8327      |
| SAFC®                | 800-244-1173      |
| Custom Synthesis     | 800-244-1173      |
| Flavors & Fragrances | 800-227-4563      |
| International        | 414-438-3850      |
| 24-Hour Emergency    | 414-438-3850      |
| Web site             | sigma-aldrich.com |
| Email                | aldrich@sial.com  |

#### **Subscriptions**

To request your FREE subscription to Material Matters, please contact us by:

| Phone:             | 800-325-3010 (USA)                                                                                                                    |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Mail:              | Attn: Marketing Communications<br>Aldrich Chemical Co., Inc.<br>Sigma-Aldrich Corporation<br>P.O. Box 355<br>Milwaukee, WI 53201-9358 |
| Website:<br>Email: | sigma-aldrich.com/mm<br>sams-usa@sial.com                                                                                             |

International customers, please contact your local Sigma-Aldrich office. For worldwide contact information, please see back cover.

Material Matters is also available in PDF format on the Internet at sigma-aldrich.com/matsci.

Aldrich brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

All prices are subject to change without notice.

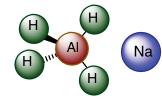
Material Matters (ISSN 1933-9631) is a publication of Aldrich Chemical Co., Inc. Aldrich is a member of the Sigma-Aldrich Group. © 2008 Sigma-Aldrich Co.

# Introduction

## "Your Materials Matter."






Joe Porwoll, President Aldrich Chemical Co., Inc. Do you have a compound that you wish Sigma-Aldrich® could list to help materials research? If it is needed to accelerate your research, it matters—please send your suggestion to **matsci@sial.com** and we will be happy to give it careful consideration.

Dr. Ragaiy Zidan of Savannah River National Laboratory kindly suggested that we offer a 1M solution of sodium aluminum hydride in tetrahydrofuran (NaAlH<sub>4</sub>/THF **Aldrich Prod. No. 698865**) as a material for alternative energy applications.<sup>1</sup> The solution of NaAlH<sub>4</sub> in THF is a base-material for advanced energy storage systems. Its electrolysis<sup>2</sup> creates aluminum hydride (AlH<sub>3</sub>), with hydrogen content of 10% by weight and a hydrogen release temperature of ~100°C. This enables the development of low-cost hydrogen storage systems with thermodynamics and

#### References:

(1) Balema, V.P. Material Matters 2007, vol 2, issue 2, 2. (2) Zidan, R. Electrochemical Reversible Formation of Alane. http://www.hydrogen.energy.gov/pdfs/review08/stp\_19\_ zidan.pdf (accessed Oct 24, 2008). Patent application filed. (3) Read, C.; Thomas, G.; Ordaz, G.; Satyapal, S. Material Matters 2007, vol 2, issue 2, 3.

kinetics meeting transportation requirements.<sup>3</sup>



#### Sodium aluminum hydride solution

[13770-96-2] NaAlH<sub>4</sub> FW 54.00 F: 10

#### ▶ 1 M in tetrahydrofuran

| density0. | 905 g/mL, 25 °C |
|-----------|-----------------|
| 698865-1L | 1 L             |

## Alternative Energy Products Featured in this Issue

| Materials Category                                                                   | Content                                                                                    | Page |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------|
| Functionalized Nanoparticles                                                         | Gold and silver functionalized nanoparticles                                               | 82   |
| Bifunctional Materials for<br>Self-Assembled Monolayers (SAMs)                       | Dithiols, carboxylic acids and other bifunctional materials for SAMs                       | 82   |
| Selected Nanopowders<br>for Energy Applications                                      | Selected metal and metal oxide nanopowders for<br>energy applications                      | 83   |
| Catalyst Materials<br>for PEM Fuel Cells                                             | Carbon supported, non-carbon supported and unsupported platinum group metals catalysts     | 88   |
| Membrane Materials<br>for PEM Fuel Cells                                             | Membranes, solutions, dispersions and other membrane materials for fuel cell applications  | 89   |
| Electrode Materials for<br>Solid Oxide Fuel Cells (SOFC)                             | Anode and cathode materials for use in Solid Oxide Fuel Cells                              | 90   |
| Electrolyte Materials<br>for Solid Oxide Fuel Cells (SOFC)                           | Oxide materials for use as electrolytes in Solid Oxide Fuel Cells                          | 90   |
| Organic Electronic Materials:<br>Plexcore <sup>®</sup> Products                      | Electronic grade semi-conducting and conducting inks                                       | 96   |
| Organic Photovoltaic Materials:<br>Light-Emitters, Dopants and<br>Electron Acceptors | Electron acceptors and sublimed grade organic light-emitters and dopants                   | 97   |
| Organic Photovoltaic Materials:<br>Indium Tin Oxide/Indium Oxide                     | Indium Tin Oxide/Indium Oxide coated slides, PET Sheets and Indium Tin Oxide (ITO) powders | 98   |
| Select Materials<br>for Battery Applications                                         | Electrode materials, electrolyte materials and solvents for advanced Li-batteries          | 103  |



## A Biologically-Inspired Electrochemical Half-Cell for Light-Driven Generation of Hydrogen



Rebecca A. Grimme<sup>1</sup> and John H. Golbeck<sup>\*1,2</sup> <sup>1</sup>Department of Chemistry, The Pennsylvania State University University Park, PA 16802

<sup>2</sup>Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 \*E-mail: jhg5@psu.edu

## Introduction

An economy based on hydrogen has long been touted as one of the most promising routes to a sustainable energy future. Hydrogen gas (H<sub>2</sub>) is a particularly clean source of energy that can be utilized efficiently in hydrogen-based fuel cells. Because the product of energy conversion is H<sub>2</sub>O, the use of H<sub>2</sub> does not exacerbate the already existing problem of CO<sub>2</sub> accumulation that is a major component of global climate change. Despite its desirable attributes, H<sub>2</sub> is not found in nature and methods must be employed to generate it using other sources of energy.

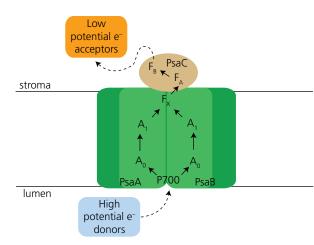
Commercial methods of producing hydrogen are expensive. These processes include electrolysis of water and steam reforming of methane. The generation of hydrogen from the electrolysis of water takes place in an electrolytic cell where an electrical power source is connected to a cathode and to an anode, each in separate vessels connected via a salt bridge. The negatively charged electrode combines electrons with protons, and this is where hydrogen is produced. The electrolysis of water requires a larger input of energy than would otherwise be necessary due to the fact that 100% of the electrical power put into the cell is not converted into the chemical bond energy of hydrogen.<sup>1</sup> Steam reforming of methane is less expensive than the electrolysis of water and is therefore the preferred industrial method of production. The heating of steam and methane to high temperatures in the presence of a nickel catalyst results in the generation of H<sub>2</sub> and CO. The further reaction of H<sub>2</sub>O and CO produces additional H<sub>2</sub> and CO<sub>2</sub>. The by-product of the reaction, CO<sub>2</sub>, however, adds to the problem of climate change. Also, because energy is lost by the conversion of methane into hydrogen, it makes little sense to use one perfectly good fuel to generate another.

With all of the drawbacks associated with currently utilized methods of hydrogen production, researchers are increasingly looking to sunlight as a means of supplying the necessary energy input. Sunlight is abundant, widely distributed, and virtually inexhaustible. The amount of solar energy that strikes the surface of the earth in one hour is more than sufficient to satisfy the total global demand for energy in an entire year.<sup>2</sup> Hence, the photocatalytic production of hydrogen is emerging as an attractive route to the generation of a renewable source of fuel.

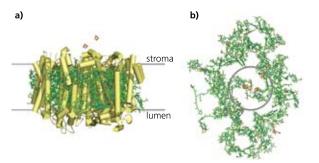
## **Emerging Technologies**

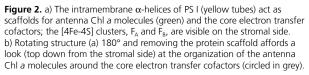
A large amount of research has focused on the generation of H<sub>2</sub> by systems that employ gold (Au, Aldrich Prod. No. 636347) or platinum (Pt, Aldrich Prod. No. 685453) nanoparticles supported on semiconductor surfaces such as TiO<sub>2</sub> (Aldrich Prod. Nos. 635057, 635049, 635065) These semiconductor systems function by absorbing a photon and creating an electron-hole pair. The electron migrates to the Au or Pt nanoparticles that are located on the semiconductor surface. These nanoparticles catalyze hydrogen production. A major drawback to this type of system lies in the fact that the band gap of TiO<sub>2</sub> semiconductors is large, and photons with sufficient energy to generate the electron-hole pair can be found only in ultraviolet (UV) radiation.<sup>6</sup> UV, which is light with wavelengths between 200 and 400 nm, constitutes only a small percentage of the solar radiation that reaches the surface of the earth. In an attempt to overcome the band-gap limitation, organic dyes can be introduced into these semiconductor systems to increase the absorption of solar radiation.<sup>3-5</sup> These dyes absorb photons in the visible portion of solar radiation and are thus able to inject electrons into the conduction band of the semiconductor materials.<sup>4,5</sup> Once electrons are in the conduction band, they migrate to the Au or Pt nanoparticles loaded on the surface, thereby enabling hydrogen production. While these dye sensitized systems increase the functional working wavelengths that are capable of sustaining the charge-separated state necessary for hydrogen production, organic dyes are degraded by illumination and moisture, limiting the usefulness of these devices.

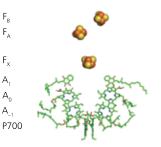
## Biological and Biohybrid Systems for Light Driven Hydrogen Production


While the dye-sensitized and semiconductor-supported nanoparticle systems hold promise, newer investigations have focused on using both biological systems and biohybrid designs to photocatalytically generate H<sub>2</sub>. It is generally accepted that any photocatalytic system for generating a usable fuel from sunlight will require three components: a module that converts sunlight into an electric current, a module that catalyzes the reduction of protons to H<sub>2</sub>, and a linker that facilitates the transfer of electrons from the light module to the catalytic module.

One such system couples Photosystem I (PS I), a naturally occurring light harvesting complex, to hydrogen evolving catalysts. The advantages of utilizing PS I as the energy-converting module are discussed in detail below. In vivo experiments using photosynthetic organisms have shown that hydrogen can be evolved by the enzymes nitrogenase (N<sub>2</sub>ase) and hydrogenase (H<sub>2</sub>ase).<sup>7,8</sup> Hydrogen is produced as a byproduct of nitrogen fixation by N<sub>2</sub>ase and it is a natural product of H<sub>2</sub>ase when an electron donor is present.<sup>7</sup> When the reducing equivalents from PS I are directed to H<sub>2</sub>ases or N<sub>2</sub>ases (the linker being a redox protein), cyanobacteria and microalgae evolve hydrogen.8 A major drawback to these in vivo systems is that the efficiency of hydrogen generation will always be limited due to the amount of solar energy necessary to sustain the growth and metabolism of the organism. A further drawback is that N<sub>2</sub>ases and H<sub>2</sub>ases are oxygen sensitive, making hydrogen generation problematic in the presence of oxygenic photosynthesis.


In vitro systems that combine biological and/or non-biological components in novel ways were the first attempt at a hybrid approach for hydrogen production. These in vitro systems utilize isolated proteins or proteins within chloroplasts in conjunction with metal deposition and/or naturally occurring H<sub>2</sub>ases. A PS I-H<sub>2</sub>ase construct has been created by fusing the gene encoding for the [NiFe]-H<sub>2</sub>ase from Ralstonia eutropha H16 with the gene encoding the PsaE (PS I stromal) protein. When the H<sub>2</sub>ase/PsaE fusion product is re-bound to a PsaE deletion mutant of PS I, hydrogen is evolved, albeit at low rates (0.2  $\mu mol~H_2~mg~Chl^{-1}~h^{-1}).^9$  Greenbaum and coworkers have pioneered the use of PS I/metal nanoparticle constructs for the photocatalysis of H<sub>2</sub>. In this work, Pt and other metals have been directly photoprecipitated on the stromal side of both isolated PS I proteins and PS I contained within spinach chloroplasts.<sup>10,11</sup> Illumination of these platinized chloroplasts and PS I proteins enables the production of  $H_2$ , but again at low rates of 0.2 to 2.0  $\mu$ mol H<sub>2</sub> mg Chl<sup>-1</sup> h<sup>-1</sup>. In a more recent study, the cross-linking of the naturally-occurring electron donor plastocyanin was shown to double the rates of hydrogen production achieved from platinized PS I.12

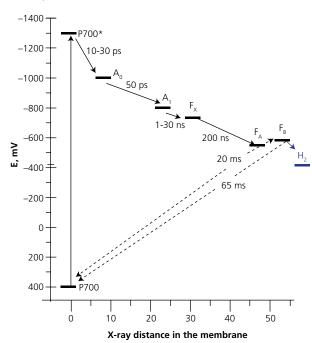

## Efficient Photon Capture and Energy Conversion by PS I

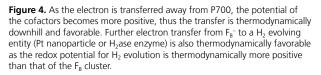

PS I is a light harvesting complex that is located in the photosynthetic membranes of plants and cyanobacteria, a photosynthetically active bacteria. The major purpose of PS I is to use the energy of light to transfer electrons from high potential (i.e. low energy) redox proteins across the membrane to low potential (i.e. high energy) redox proteins.<sup>13</sup> Figure 1 depicts the arrangement of PS I proteins within the membrane. Although PS I comprises 13 proteins, only PsaA, PsaB, and PsaC are of interest for this article. PsaA and PsaB are intramembrane proteins which support the core electron transfer cofactors of PS I, while PsaC lies outside of the membrane and acts as an interface to shuttle electrons from within the membrane to soluble low potential electron accepting proteins. Figure 2 affords a more detailed look at the organization of PS I. Additional intramembrane proteins surround the PsaA/PsaB heterodimer and support ~100 antenna chlorophyll molecules that are active in light harvesting.<sup>14</sup> These antenna pigments in cyanobacterial PS I are chlorophyll a (Chl a) molecules that are capable of absorbing photons with wavelengths shorter than 700 nm. This absorbance corresponds to 43-46% of the total solar radiation that reaches the surface of the earth.<sup>15</sup> When a Chl a molecule absorbs a photon, an excited state is created; the energy is ultimately transferred by resonance energy transfer to the primary electron donor of PS I, a Chl a special pair, termed P700. The arrangement of the core electron transfer cofactors is shown in Figure 3. When the exciton reaches P700, a charge-separated state occurs between P700 and the primary electron acceptor,  $A_0$ , another Chl *a* molecule. Ultimately, the electron is transferred through the other electron transfer cofactors to  $F_{B}$ , the terminal cofactor within PS I. The F<sub>B</sub> cluster has a midpoint potential of -580 mV, which is more than sufficient to reduce protons to H<sub>2</sub>.<sup>13</sup> The quantum yield of PS I approaches 1.0 which means that nearly all of the photons that PS I absorbs are converted to the charge separated state P700<sup>+</sup>/F<sub>B</sub><sup>-</sup>.



**Figure 1.** This cartoon depicts Photosystem I within the thylakoid membrane. PsaA and PsaB (light green) are an intramembrane protein heterodimer that contain the core electron transfer cofactors within PS I—P700, A<sub>0</sub>, A<sub>1</sub>, and F<sub>x</sub>. PsaC lays outside of the membrane on the stromal side of PS I and harbors the electron transfer cofactors F<sub>A</sub> and F<sub>B</sub>. Additional intramembrane proteins (dark green) support antenna chlorophyll molecules that are responsible for light harvesting. High potential (low energy) electron donating proteins (plastocyanin or cytochrome c<sub>b</sub>) provide electrons to P700. The light-driven electron transfer through the membrane is photocatalyzed by photons absorbed by the antenna chlorophyll molecules. Electrons ultimately arrive on the stromal side of PS I at F<sub>B</sub> and can then transfer to soluble low potential (high energy) electron accepting proteins (ferredoxin or flavodoxin).






**Figure 3.** The core electron transfer cofactors are arranged to allow for light-induced electron transfer to occur rapidly from P700, through the cofactors, to  $F_8$ . A charge-separated state is first established between P700 and  $A_0$ . The electron is then transferred to  $A_1$ , a bound phyloquinone molecule, and then to three [4Fe-4S] clusters. The first of these, the inter-polypeptide [4Fe-4S] cluster,  $F_x$ , is ligated by cysteine residues provided by both PsaA and PsaB. The stromal protein PsaC harbors the two terminal [4Fe-4S] clusters,  $F_A$  and  $F_8$ .



Electron transfer on the PS I acceptor side is thermodynamically favorable, as the midpoint potential of each of the subsequent cofactors is more positive than the previous one. **Figure 4** shows the potentials of the electron transfer cofactors as a function of their distance from P700 as well as forward electron transfer and charge-recombination times. The electron transfer from P700 to  $F_B$  is rapid (~200 ns) and the lifetime of the charge-separated state,  $P700^+/F_B^-$ , is long (~65 ms).<sup>16</sup> Provided the electron is transferred away from the  $F_B$  cluster within this lifetime, charge recombination will not occur and electron can be harnessed for useful work. In the case of normal photosynthesis, this work is the reduction of ferredoxin or flavodoxin (and the subsequent production of NADPH), but if the electron can be removed at  $F_B^-$  directly, it can be used to reduce protons to  $H_2$ .



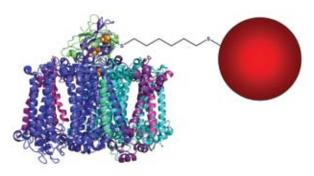


### Hydrogen Catalysis by Pt Nanoparticles

As in the case of semiconductor systems, Pt nanoparticles can be used as the catalyst for hydrogen generation. H<sup>+</sup> ions adsorb onto the Pt surface and combine with an electron to form an H atom. A covalent bond is catalytically generated between two adsorbed H atoms to yield H<sub>2</sub>. H<sub>2</sub> then desorbs from the Pt surface. At pH 7.0, this process occurs at a midpoint potential of -420 mV. If the electrons are derived from the F<sub>B</sub> cluster of PS I, there is ~160 mV of thermodynamic driving force for this reaction to occur. This translates to an equilibrium constant >10<sup>2</sup>, indicating that this reaction will be a highly favorable reaction on thermodynamic grounds. In practice, a system could be set up in which PS I and Pt nanoparticles are suspended in solution, however hydrogen generation would most likely be of low yield due to the fact that the interactions between nanoparticles and PS I would be controlled by slow diffusion chemistry. The speed of diffusion decreases as size of the body in motion increases. In this case, both the PS I and the Pt nanoparticles are large entities and diffusion would likely be too slow to transfer the electron from  $F_B^-$  to the nanoparticle surface before the charge recombination between P700<sup>+</sup> and  $F_B^-$  would occur. In order to avoid this inevitable loss of energy, a direct link should be made between the PS I and the Pt nanoparticle.

## Molecular Wires Form a Covalent Pathway

Molecular wires are the answer to the diffusional limitation in electron transfer. A molecular wire, in the form of an aliphatic or aromatic hydrocarbon chain, can be used to connect PS I with the Pt nanoparticle. On one hand, the molecular wire should be sufficiently long to shield the protein from the nanoparticle surface to limit protein denaturation. On the other hand, the molecular wire should be sufficiently short enough to allow for efficient energy transfer between the two modules. Because the charge-separated state  $P700^+/F_B^-$  is stable for ~65 ms, efficient electron transfer away from F<sub>B</sub> must occur on the order of 1 ms. Marcus theory, which relates the rate of electron transfer to the distance between the cofactors (as well as the Gibbs free energy change, reorganization energy, and temperature), governs the maximum distance between PS I and the Pt nanoparticle for optimal electron transfer. Under ideal conditions, for the electron to be transferred on the microsecond timescale, the distance between the cofactors should be shorter than 2.0 nm. Short aliphatic and aromatic hydrocarbons with thiol moieties easily functionalize Pt nanoparticle surfaces and are commercially available (See product table 'Functionalized Nanoparticles' on pg 82). Unfortunately, a direct bond cannot be made to native PS I without modification.


## Manipulation of PS I

In order to attach the molecular wire, a variant of the PsaC subunit must be engineered in which the native cysteine ligand to the  $F_{B}$  cluster is replaced with a glycine residue. Glycine lacks a side chain, and is hence incapable of ligating the Fe atom. However, its use opens up a site to which a molecular wire can be attached. The iron-free form of the PsaC variant is expressed in Escherichia coli and the  $F_A$  and  $F_B$  clusters are inserted using inorganic [4Fe-4S] clusters ligated by 2-mercaptoethanol (Sigma Prod. No. M7522). The PsaC variant can then be re-bound to previously-prepared PS I cores that lack the PsaC subunit. Analytical techniques show that two [4Fe-4S] clusters are inserted into the protein despite the absence of one of the cysteine ligands to  $F_{\rm B}$ . This anomaly has been explained by the fact that the [4Fe-4S] clusters are inserted into the protein in vitro by a ligand exchange mechanism in which the 2-mercaptoethanol ligands are displaced by the protein cysteine ligands. At the glycine position, the 2-mercaptoethanol is retained, where it functions as a

so-called rescue ligand for the  $F_B$  cluster. The insertion process, incidentally, is driven to completion by the entropic gain realized when seven 2-mercaptoethanol molecules are released into solution during the insertion process. Thiol functionalities in the form of a molecular wire can then readily displace the single 2-mercaptoethanol ligand through facile sulfur-iron displacement reactions.<sup>17,18</sup>

## Catalytic Hydrogen Production Using Bioconjugates

Bioconjugates composed of rebuilt PS I containing the glycine variant of PsaC, 1,6-hexanedithiol (Aldrich Prod. No. H12005) molecular wires, and 3 nm Pt nanoparticles are assembled as shown in Figure 5. Sodium ascorbate (Sigma Prod. No. A7631) serves as the sacrificial electron donor to dicholorophenylindophenol (DCPIP) (Sigma-Aldrich Prod. No. 119814), which donates electrons directly to P700<sup>+</sup>. When the module is illuminated, H<sub>2</sub> is generated at a rate of 9.6 µmol H<sub>2</sub> mg Chl<sup>-1</sup> h<sup>-1</sup> (0.23 mol H<sub>2</sub> mol PS l<sup>-1</sup> s<sup>-1</sup>) over a period of 24 hr. The addition of cytochrome c<sub>6</sub>, which is a superior electron donor to P700<sup>+</sup>, results in hydrogen generation at a rate of 49.3 µmol H<sub>2</sub> mg Chl<sup>-1</sup> h<sup>-1</sup> (1.17 mol H<sub>2</sub> mol PS l<sup>-1</sup> s<sup>-1</sup>).<sup>19</sup>



**Figure 5.** This bioconjugate is composed of Photosystem I rebuilt from recombinantly expressed C13G/C33S variant PsaC, PsaD, and P700/F<sub>x</sub> cores, a 1,6-hexanedithiol (**Aldrich Prod. No. H12005**) molecular wire, and either Au or Pt nanoparticles. The molecular wires serves not only as a covalent link between PS I and the nanoparticle but also acts as a conduit for electron transfer. The electron donor, cytochrome c<sub>6</sub>, is not depicted here.

While the initial rates for this system were already promising, continued research has yielded better performance. Altering the pH and the ionic strength of the solution, changing the length and the aromaticity of the molecular wire, as well as cross-linking cytochrome  $c_6$  to the rebuilt PS I promises to increase the rate of hydrogen generation by the PS I/molecular wire/Pt nanoparticle bioconjugate. The best rates of H<sub>2</sub> generation to-date are at pH 7.0 in 10 mM MgCl<sub>2</sub> and 10 mM NaCl using chemically-cross linked cytochrome  $c_6$ .

### Summary

The ability to photocatalytically generate clean hydrogen fuel has the potential to satisfy the global demand for storable energy and has advantages over the costly and environmentally unfriendly current means of hydrogen production. Biologically inspired systems that employ PS I as a means of photon capture and as a source of reducing electrons are yielding promising results when attached to Pt nanoparticles for the light-driven generation of hydrogen.

#### References:

(1) Rosen, M.A., Scott, D.S., Int. J. Hydrogen Energy, 1998, 23, 653. (2) United Nations Development Program, World Energy Assesment Report: Energy and the Challenge of Sustainablity, 2003, United Nations, New York. (3) Mizukoshi, Y., Makise, Y., Shuto, T., Hu, J., Tominaga, A., Shironita, S., Tanabe, S., Ultrasonics Sonochem., 2007, 14, 387. (4) Gurunathan, K., Maruthamuthu, P., Sastri, M.V.C., Int. J. Hydrogen Energy, 1997, 22, 57. (5) Dhanalakshmi, K.B., Latha, S., Anandan, S., Maruthamuthu, P., Int. J. Hydrogen Energy, 2001, 26, 669. (6) Tang, H., Berger, H., Schmid, P.E., Levy, F., Solid State Commun., 1994, 92, 267. (7) Melis, A., Zhang, I., Forestier, M., Ghirardi, M.L., Seibert, M., Plant Physiol., 2000, 122, 515. (8) Schutz, K., Happe, T., Troshina, O., Lindblad, P., Leitao, E., Oliveira, P., Tamagnini, P., Planta, 2004, 218, 350. (9) Ihara, M., Nishihara, H., Yoon, K.S., Lenz, O., Friedrich, B., Nakamoto, H., Kojima, K., Honma, D., Kamachi, T., Okura, I., *Photochem. Photobioil.*, **2006**, *82*, 676. (10) Lee, J.W., Tevault, C.V., Blankinship, S.L., Collins, R.T., Greenbaum, E., Energy & Fuels, 1994, 8, 770 (11) Millsaps, J.F., Bruce, B.D., Lee, J.W., Greenbaum, E., Photochem. Photobiol., 2001, 73, 630. (12) Evans, B.R., O'Neill, H.M., Hutchens, S.A., Bruce, B.D., Greenbaum, Nano Lett., 2004, 10, 1815. (13) Brettel, K., Bichim. Biophys. Acta, 1997, 1318, 322. (14) Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W., Krauss, N., Nature, 2001, 411, 909. (15) Gibbs, M., Holaender, A., Kok, B., Krampitz, L.O., San Pietro, A., A report on a workshop held September 5-6, 1973, at Bethesda, MD, supported by NSF under RANN Grant GI 40253 to Indiana University. (16) Shinkarev, V.P., Vassiliev, I.R., Golbeck, J.H., *Biophys. J.*, **2000**, *78*, 363. (17) Antonkine, M.L., Maes, E.M., Czemuszewiez, R.S., Breitenstein, C., Bill, E., Falzone, C.J., Balasumbramanian, R., Lubner, C.E., Bryant, D.A., Golbeck, J.H., Biochim. Biophys. Acta, 2007, 1767, 712. (18) Que, L. Jr., Bobrik, M.A., Ibers, J.A., Holm, R.H., J. Am. Chem. Soc., 1974, 96, 4168. (19) Grimme, R.A., Lubner, C.E., Brvant, D.A., Golbeck, J.H., J. Am. Chem. Soc., 2008, 130, 6308.



## Gold and Silver Functionalized Nanoparticles

| Name                                                                               | Structure                                                            | Concentration                 | Particle Size      | Cat. No.    |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|--------------------|-------------|
| Octanethiol functionalized gold<br>nanoparticles                                   | Au-SCH <sub>2</sub> (CH <sub>2</sub> ) <sub>6</sub> CH <sub>3</sub>  | 2 % (w/v) in toluene          | 2 - 4 nm (DLS)     | 660426-5ML  |
| Dodecanethiol functionalized gold nanoparticles                                    | Au-SCH <sub>2</sub> (CH <sub>2</sub> ) <sub>10</sub> CH <sub>3</sub> | 2 % (w/v) in toluene          | 2 - 4 nm (DLS)     | 660434-5ML  |
| (1-Mercaptoundec-11-yl)tetra(ethylene<br>glycol) functionalized gold nanoparticles | $Au$ $S^{CH_2(CH_2)_9CH_2}$ $O^{OH}_4$                               | 2 % (w/v) in H <sub>2</sub> O | 3.5 - 5.5 nm (TEM) | 687863-5ML  |
| 1-Mercapto-(triethylene glycol) methyl<br>ether functionalized gold nanoparticles  |                                                                      | 2 % (w/v) in absolute ethanol | 3.5 - 5.5 nm (TEM) | 694169-5ML  |
| Decanethiol functionalized silver nanoparticles                                    | Ag-SCH <sub>2</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>3</sub>  | 0.1 % (w/v) in hexane         | 3 - 7 nm (DLS)     | 673633-25ML |
| Dodecanethiol functionalized silver nanoparticles                                  | Ag-SCH <sub>2</sub> (CH <sub>2</sub> ) <sub>10</sub> CH <sub>3</sub> | 0.25 % (w/v) in hexane        | 5 - 15 nm (DLS)    | 667838-25ML |

## **Bifunctional Materials for Self-Assembled Mono-Layers**

For a complete list of self-assembly materials please visit *sigma-aldrich.com/selfassembly*.

| Name                               | Structure                                                            | Purity | Cat. No.                     |
|------------------------------------|----------------------------------------------------------------------|--------|------------------------------|
| 4-Cyano-1-butanethiol              | N≣CSH                                                                | 97%    | 692581-500MG                 |
| Biphenyl-4,4'-dithiol              | HS-                                                                  | 95%    | 673099-1G                    |
| 4,4'-Dimercaptostilbene            | HS                                                                   | >96%   | 701696-100MG                 |
| 2,2'-(Ethylenedioxy)diethanethiol  | HSOSH                                                                | 95%    | 465178-100ML<br>465178-500ML |
| 6-Mercaptohexanoic acid            | HS                                                                   | 90%    | 674974-1G                    |
| 8-Mercaptooctanoic acid            | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> CH <sub>2</sub> OH | 95%    | 675075-1G                    |
| 3-Mercapto-1-propanol              | SHCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH                 | 95%    | 405736-1G<br>405736-5G       |
| 6-Mercapto-1-hexanol               | SHCH <sub>2</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>2</sub> OH | 97%    | 451088-5ML<br>451088-25ML    |
| 9-Mercapto-1-nonanol               | HSOH                                                                 | 96%    | 698768-1G                    |
| 1,6-Hexanedithiol                  | SHCH <sub>2</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>2</sub> SH | 96%    | H12005-5G<br>H12005-25G      |
| 1,8-Octanedithiol                  | $\mathrm{HSCH}_2(\mathrm{CH}_2)_6\mathrm{CH}_2\mathrm{SH}$           | ≥97%   | O3605-1G<br>O3605-5G         |
| NanoThinks™ THIO8                  | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>6</sub> CH <sub>2</sub> SH | -      | 662615-100ML                 |
| 1,9-Nonanedithiol                  | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>7</sub> CH <sub>2</sub> SH | 95%    | N29805-5G<br>N29805-25G      |
| p-Terphenyl-4,4"-dithiol           | нѕ                                                                   | -      | 704709-100MG                 |
| p-Terphenyl-4,4"-dicarboxylic acid | HO HO                                                                | -      | 704717-100MG                 |

# Light-Driven Generation of Hydroge

## Selected Nanopowders for Energy Applications

For a complete list of nanopowder please visit *sigma-aldrich.com/nano*.

| Name                                                 | Particle Size                                                             | Surface Area                                                                             | Purity/Concentration                                                                          | Cat. No.                                 |
|------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|
| Silver                                               | <150 nm                                                                   | -                                                                                        | 99% trace metals basis                                                                        | 484059-5G                                |
| Silver                                               | <100 nm                                                                   | surface area 5.0 m²/g                                                                    | 99.5% trace metals basis                                                                      | 576832-5G                                |
| Silver, dispersion                                   | <100 nm (TEM)                                                             | -                                                                                        | 10 wt. % in ethylene glycol                                                                   | 658804-5G<br>658804-25G                  |
| Silver, dispersion                                   | ~157 nm                                                                   | -                                                                                        | $0.25 \text{ mM} \text{ in } H_2O$                                                            | 675318-5ML                               |
| Gold                                                 | <100 nm                                                                   | -                                                                                        | 99.9+% trace metals basis                                                                     | 636347-1G                                |
| Platinum                                             | <50 nm (BET)                                                              | -                                                                                        | 99.9+%                                                                                        | 685453-500MG                             |
| Titanium(IV) oxide,<br>mixture of rutile and anatase | <100 nm (BET)<br><50 nm (XRD)                                             | spec. surface 15 m <sup>2</sup> /g                                                       | 99.9% trace metals basis                                                                      | 634662-25G<br>634662-100G                |
| Titanium(IV) oxide,<br>mixture of rutile and anatase | ~21 nm (average particle size<br>of starting nanopowder)<br><250 nm (DLS) | BET surf. area 50(±18) m <sup>2</sup> /g<br>(BET surface area of starting<br>nanopowder) | 99.9% trace metals basis, 53-57 wt. % in<br>diethylene glycol monobutyl ether/ethylene glycol | 700355-25G                               |
| Titanium(IV) oxide,<br>mixture of rutile and anatase | <150 nm (DLS)<br>~21 nm (average particle size<br>of starting nanopowder) | -                                                                                        | 99.9% trace metals basis, 33-37 wt. % in $\rm H_{2}O$                                         | 700347-25G<br>700347-100G                |
| Titanium(IV) oxide,<br>mixture of rutile and anatase | ~15 nm<br><150 nm (DLS)                                                   | BET surf. area 102 m <sup>2</sup> /g<br>(BET surface area of starting<br>nanopowder)     | 99.9% trace metals basis, 43-47 wt. % in xylene                                               | 700339-100G                              |
| Titanium(IV) oxide, anatase                          | <25 nm                                                                    | spec. surface 200-220 m <sup>2</sup> /g                                                  | 99.7% trace metals basis                                                                      | 637254-50G<br>637254-100G<br>637254-500G |
| Titanium(IV) oxide, rutile                           | <100 nm                                                                   | spec. surface 130-190 m <sup>2</sup> /g                                                  | 99.5% trace metals basis                                                                      | 637262-25G<br>637262-100G<br>637262-500G |
| Zinc oxide                                           | <100 nm                                                                   | surface area 15-25 m <sup>2</sup> /g                                                     | -                                                                                             | 544906-10G<br>544906-50G                 |
| Zinc oxide                                           | <50 nm (BET)                                                              | >10.8 m²/g                                                                               | >97%                                                                                          | 677450-5G                                |



## Aldrich<sup>®</sup> Materials Science Catalog Your Materials Matter

#### With over 4,000 products for:

- Alternative Energy
- Micro/Nano Electronics
- Organic Electronics and Photonics
- Books & Labware

- Metal and Ceramic Science
- Nanomaterials
- Polymer Science

#### To reserve your free copy, visit *sigma-aldrich.com/mscatalogm*

sigma-aldrich.com

## SIGMA-ALDRICH®

Materials Science

For questions, product data, or new product suggestions, please contact Aldrich Materials Science at *matsci@sial.com*.







## Hydrogen Storage Materials: New Additions

Storing hydrogen in solids—hydrides, organic or inorganic materials, and metal-organic frameworks—offers a unique opportunity for its convenient and safe use in a broad variety of fuel cell applications. Aldrich's products for hydrogen storage are designed to satisfy the basic requirements for materials research. Information provided with our products includes purity, hydrogen content, impurity profiles and x-ray powder differentiation dots.

For our complete product offer please visit sigma-aldrich.com/hydrogen

## Organic Hydrogen Storage Media & Linkers for Metal Organic Frameworks (MOFs)

| Product Name                                               | Prod. No. |
|------------------------------------------------------------|-----------|
| 1,3,5-Tris(4-carboxyphenyl)benzene ≥98%, ≤20 wt. % solvent | 686859    |
| Hexadecahydropyrene 95%                                    | 691704    |
| 4,4'-Bipiperidine                                          | 705845    |
| Tetradecahydro-4,7-phenanthroline                          | 705853    |

## Hydrogen Storage Alloys

| Product Name                                            | Prod. No. |
|---------------------------------------------------------|-----------|
| Zirconium-Iron alloy                                    | 693812    |
| Zirconium-Scandium-Iron alloy                           | 693804    |
| Lanthanum-Nickel alloy                                  | 685933    |
| Lanthanum-Nickel-Cobalt alloy                           | 685968    |
| Mischmetal-Nickel alloy                                 | 685976    |
| Titanium-Manganese alloy TiMn <sub>2</sub> , alloy 5800 | 685941    |
| Hydrides                                                |           |
| Borane-ammonia complex 97%                              | 682098    |
| Calcium borohydride                                     | 695254    |
| Lithium borodeuteride ≥95%                              | 685917    |
| Magnesium hydride hydrogen-storage grade                | 683043    |

## Materials Issues in Polymer Electrolyte Membrane Fuel Cells





Nancy L. Garland<sup>\*1</sup>, Thomas G. Benjamin<sup>2</sup> and John P. Kopasz<sup>2</sup> <sup>1</sup>U.S. Department of Energy, 1000 Independence Avenue, S.W., Washington, D.C. 20585-0121

<sup>2</sup>Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439

\*E-mail: Nancy.Garland@ee.doe.gov

## Introduction

Fuel cells have the potential to reduce the nation's energy use through increased energy conversion efficiency and dependence on imported petroleum by the use of hydrogen from renewable resources. The US DOE Fuel Cell subprogram emphasizes polymer electrolyte membrane (PEM) fuel cells as replacements for internal combustion engines in light-duty vehicles to support the goal of reducing oil use in the transportation sector. PEM fuel cells are the focus for light-duty vehicles because they are capable of rapid start-up, demonstrate high operating efficiency, and can operate at low temperatures.

The program also supports fuel cells for stationary power, portable power, and auxiliary power applications where earlier market entry would assist in the development of a fuel cell manufacturing and supplier base. The technical focus is on developing materials and components that enable fuel cells to achieve the fuel cell subprogram objectives, primarily related to system cost and durability.

For transportation applications, the performance and cost of a fuel cell vehicle must be comparable or superior to today's gasoline vehicles to achieve widespread penetration into the market and achieve the desired reduction in petroleum consumption. By translating vehicle performance requirements into fuel cell system needs, DOE has defined technical targets for 2010 and 2015. These targets are based on competitiveness with current internal combustion engine vehicles in terms of vehicle performance and cost, while providing improvements in efficiency of a factor of 2.5 to 3. The overall system targets are: a 60% peak-efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of \$45/kW by 2010 and \$30/kW by 2015.

DOE's approach to achieving these technical and cost targets is to improve existing materials and to identify and qualify new materials.

## Fuel Cell Description

A fuel cell electrocatalytically generates electricity in a manner analogous to batteries. However, in a fuel cell the electrodes are not consumed. Rather, a fuel cell consumes fuel (hydrogen for PEM fuel cells) at the anode and oxygen from the air at the cathode. A catalyst is utilized at the anode to promote separation of the hydrogen's protons and electrons. The protons travel through a membrane material to the cathode while the electrons travel via an external circuit to the cathode where they combine with the protons and oxygen on the cathode catalyst to form water and complete the cycle. The combination of the anode/membrane/ cathode layers is called the membrane electrode assembly (MEA).

To complete a cell, the MEA is usually sandwiched between gas diffusion layers and gas flow fields that distribute reactants to the electrodes and collect the current from the reaction. Each cell generates less than a volt so many cells are "stacked" in series to generate voltage at useful levels.

## **Current PEM Fuel Cell Materials**

Conventional anodes and cathodes are comprised of small platinum (Pt) catalyst particles (2-5 nm) supported on porous carbon (**Aldrich Prod. No. 205923**) as shown in **Figure 1**.<sup>1,2</sup> Such electrodes face a number of issues including Pt particle stability, especially under automotive duty cycles; carbon support corrosion; and insufficient catalytic activity to meet Pt content targets.

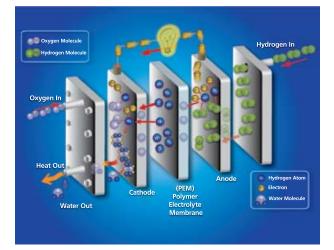



Figure 1. Illustration of polymer electrolyte membrane fuel cell operating on hydrogen fuel and oxygen from air.

Most of the current research on catalysts for PEM fuel cells is focused on the cathode. The general objectives are: to reduce Pt content (and thereby cost); to obtain higher catalytic activity than the standard carbon-supported platinum catalysts; and to increase the durability of the catalyst/support system, especially during transients and shutdown/startup cycles.<sup>3</sup>

The state-of-the-art membrane material is based on perfluorosulfonic acid that depends on the presence of water in the membrane to conduct the protons. The primary deficits of this material are: loss of conductivity at temperatures above 100°C and low humidity; insufficient conductivity at low temperature (–20°C); insufficient mechanical integrity; during humidity cycles which cause swelling and shrinking; and chemical stability. Most DOE membrane research is focused on durability and operation at temperatures above 100°C. Both mechanical and chemical durability are being addressed by physical reinforcement and by changes to the ionomer chemistry and structure and its end groups, respectively.



## **Fuel Cell Targets**

To help achieve the high-level goals mentioned above and to guide component researchers, DOE has also developed targets for individual PEM fuel cell components. Targets for the electrocatalyst, membrane, and membrane electrode assembly are shown in Tables 1, 2, and 3, respectively. Successful validation of an advanced component requires that all targets be met simultaneously. A complete set of DOE's PEM fuel cell system, stack and component-level technical and cost targets are found in the DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.<sup>4</sup>

**Table 1** contains DOE targets specifically for the electrocatalyst and support. The key targets are related to cost (Pt content) and durability with cycling. For a service life of 5,000 hours (~150,000 miles) that is acceptable to consumers, automotive service is estimated to involve about 17,000 shutdown/startup cycles, 1,650 freeze cycles, and 1,200,000 load cycles.<sup>5</sup>

The 17,000 shutdown/startup cycles are particularly important because the anode, which is normally filled with hydrogen, can experience intrusion of air (oxygen) during shutdown. This results in mixed potentials at the anode and high potentials at the cathode, causing highly corrosive conditions.<sup>3</sup>

Depending on the severity of the 1,200,000 load (voltage) cycles during vehicle operation, the Pt on the electrodes can dissolve and redeposit, causing changes in Pt particle morphology and a loss of performance.

#### Table 1. Electrocatalyst Targets

|                                                                                      |                                                      | Stack T        | <b>Targets</b> |
|--------------------------------------------------------------------------------------|------------------------------------------------------|----------------|----------------|
| Characteristic                                                                       | Units                                                | 2010           | 2015           |
| Platinum group metal total content (both electrodes)                                 | g/kW (rated)                                         | 0.3            | 0.2            |
| Platinum group metal<br>(PGM) total loading <sup>a</sup>                             | mg PGM/cm <sup>2</sup> electrode area                | 0.3            | 0.2            |
| Cost                                                                                 | \$/kW                                                | 5 <sup>b</sup> | 3 <sup>b</sup> |
| Durability with cycling <sup>c</sup><br>Operating temp ≤80°C<br>Operating temp >80°C | h                                                    | 5,000<br>2,000 | 5,000<br>5,000 |
| Electrochemical area loss <sup>d</sup>                                               | %                                                    | <40            | <40            |
| Electrocatalyst support loss <sup>d</sup>                                            | mV after<br>100 hours @ 1.2 V                        | <30            | <30            |
| Mass activity <sup>e</sup>                                                           | A/mg Pt @ 900 mV <sub>IR-free</sub>                  | 0.44           | 0.44           |
| Specific activity <sup>e</sup>                                                       | $\mu\text{A/cm}^2 \text{ @ 900 mV}_{\text{IR-free}}$ | 720            | 720            |
| Non-Pt catalyst activity per volume of supported catalyst                            | A/cm <sup>3</sup> @ 800 mV <sub>IR-free</sub>        | >130           | 300            |

<sup>a</sup>Derived from performance data at rated power targets specified in Table 3.4.14 of Ref. 2. <sup>b</sup>Based on 2002 dollars, platinum cost of \$450 / troy ounce = \$15/g, loading <0.2 g/kW<sub>e</sub> and costs projected to high volume production (500,000 stacks per year). <sup>c</sup>Includes twoical driving cycles.

<sup>d</sup>Tested per GM protocol (Mathias, M.F., et al., Interface (Electrochemical Society), Fall 2005, p. 24).

<sup>e</sup>Test at 80°C/120°C  $H_2/O_2$  in MEA; fully humidified with total outlet pressure of 150 kPa; anode stoichiometry 2; cathode stoichiometry 9.5.

**Table 2** describes targets for the membrane. The focus of the targets is to provide guidance for development of membranes that will operate and survive over the entire range of automotive operating conditions. These conditions range from sub-freezing to boiling temperatures and relative humidities of 0 to 100%. For membranes that depend on water for conductivity, freezing or boiling water conditions present obvious problems.

#### Table 2. Membrane Targets

| Table 2. Membrane Targets                                                            |                                             |        |        |
|--------------------------------------------------------------------------------------|---------------------------------------------|--------|--------|
| Characteristica                                                                      | Units                                       | 2010   | 2015   |
| Oxygen crossover <sup>b</sup>                                                        | mA/cm <sup>2</sup>                          | 2      | 2      |
| Hydrogen crossover <sup>b</sup>                                                      | mA/cm <sup>2</sup>                          | 2      | 2      |
| Area-specific resistance at:                                                         |                                             |        |        |
| Maximum operating<br>temperature and water<br>partial pressures from<br>40 to 80 kPa | ohm cm <sup>2</sup>                         | 0.02   | 0.02   |
| 80 °C water and water<br>vapor partial pressure<br>from 25 to 45 kPa                 | ohm cm <sup>2</sup>                         | 0.02   | 0.02   |
| 30 °C water and water<br>vapor partial pressure up<br>to 4 kPa                       | ohm cm <sup>2</sup>                         | 0.03   | 0.03   |
| –20°C                                                                                | ohm cm <sup>2</sup>                         | 0.2    | 0.2    |
| Maximum operating temperature                                                        | °C                                          | 120    | 120    |
| Cost <sup>c</sup>                                                                    | \$/m <sup>2</sup>                           | 20     | 20     |
| Durability with cycling <sup>d</sup>                                                 |                                             |        |        |
| Mechanical                                                                           | Cycles w/<10 sccm<br>crossover              | 20,000 | 20,000 |
| Chemical                                                                             | H <sub>2</sub> crossover mA/cm <sub>2</sub> | 200    | 20     |
|                                                                                      |                                             |        |        |

<sup>a</sup>Alternative membranes might need additional tests.

 $^{\rm b} Tested in MEA at 1 atm O_2 or H_2 at nominal stack operating temperature.$ \*Based on 2002 dollars and projected to high-volume production (500,000 stacks per year).

dIncludes typical driving cycles.

**Table 3** contains the targets for the membrane electrode assembly. In addition to the durability and cost targets associated with the electrocatalyst and the membrane, additional performance-related targets pertain to the MEA. Performance is measured in power (watts) per area of cell that can be translated to mass of Pt per watt produced. Pt mass and cost are the primary drivers.

#### Table 3. Membrane Electrode Assembly Targets

|                                                                              | , , , , , , , , , , , , , , , , , , , ,  |            |            |
|------------------------------------------------------------------------------|------------------------------------------|------------|------------|
| Characteristic                                                               | Units                                    | 2010       | 2015       |
| Operating temperature                                                        | °C                                       | <120       | <120       |
| Inlet water vapor partial pressure                                           | kPa                                      | <1.5       | <1.5       |
| Cost <sup>a</sup>                                                            | \$/kW                                    | 10         | 5          |
| Durability with cycling <sup>b</sup>                                         | hours                                    | 5,000      | 5,000      |
| At operating temp of ≤80 °C<br>At operating temp of >80 °C                   | hours                                    | 2,000      | 5,000      |
| Unassisted start from low temperature                                        | °C                                       | -40        | -40        |
| Performance @ 1/4 power (0.8V)                                               | mA/cm <sup>2</sup><br>mW/cm <sup>2</sup> | 300<br>250 | 300<br>250 |
| Performance @ rated power                                                    | mW/cm <sup>2</sup>                       | 1,000      | 1,000      |
| Extent of performance (power density) degradation over lifetime <sup>c</sup> | %                                        | 10         | 5          |
| Thermal cyclability in presence of condensed water                           |                                          | Yes        | Yes        |

<sup>a</sup>Based on 2002 dollars and costs projected to high volume production (500,000 stacks per year).

<sup>b</sup>Based on appropriate test protocol.

<sup>c</sup>Degradation target includes factor for tolerance of the MEA to impurities in the fuel and air supply. To be evaluated as a percent decrease in cell voltage at all current densities (i.e., no more than 5%).

## Technology Development Approach and Status

#### Electrocatalyst and Support Research (Figure 2)

Research efforts here are centered on increasing cathode activity and durability. Four strategies are being employed<sup>6</sup>: lower platinum group metal (PGM) content by catalyst particle morphology and crystal structure; Pt alloys with less expensive base metals such as Co, Mn, Ni, and others; novel supports such as non-carbon supports and alternative carbon structures; and non-PGM catalysts.

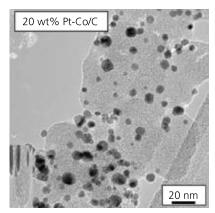



Figure 2. TEM image of a Pt/C electrode. The smaller, darker particles are the Pt catalysts and the larger spherical particles are the carbon supports. Ionomer surrounding the catalyst and support provides a pathway for proton transfer.

An example of a non-carbon catalyst support is 3M's nanostructured thin film polymer whisker concept<sup>7</sup> as well as titanium oxide (**Aldrich Prod. No. 14021**) and tungsten carbide (**Aldrich Prod. No. 241881**).<sup>8,9</sup>

Non-PGM catalysts are based on metal porphyrins and other metal-C-N heterocyclic ligand complexes, metal free C-N heterocyclic systems, nitrogen-doped carbon nanostructures and their composites, and metal chalcogenides.<sup>10-12</sup>

Major progress in the electrocatalyst and support area has been made. Several researchers have demonstrated Pt alloy compositions with significantly higher performance and durability than Pt alone.<sup>10,13,14</sup> A total Pt loading of 0.4 mg Pt/cm<sup>2</sup> has been demonstrated in a single cell for more than 7,300 hours with voltage cycling, surpassing the 2015 durability targets.<sup>14</sup> Catalysts with the required activity and durability still need to be developed.

#### Membrane Research

There are two major areas of focus: durability and performance over the entire range of automotive operating conditions. In traditional PFSA membranes, conductivity increases with increasing sulfonic acid group concentration, however this leads to increased swelling and decreases membrane stability. Significant advances in membrane stability have been made in the recent past. Chemical stability has been increased by decreasing the number of carboxylic end groups in the polymer, while mechanical stability has been increased through use of inert support materials, such as PTFE (Aldrich Prod. Nos. 430935, 430943, 468096, 468118, 182478), polysulfone (Aldrich Prod. Nos. 23817).<sup>15-17</sup> Reinforced membranes have demonstrated a Young's modulus exceeding 500 MPa at 25°C and 30%RH, compared to ~200 MPa for an unreinforced membrane. Similarly, higher proportional limit stress and higher break stress at all temperature and humidity levels, as well as lower dimensional changes due to swelling were observed for the reinforced membrane.<sup>16</sup> Single cells containing a stabilized MEA have operated for nearly 5,000 hours (the 2015 target) under voltage and humidity cycling.<sup>18</sup> Another single cell with a mechanically stabilized membrane and a Pt-alloy cathode catalyst has recently achieved over 7,300 hours of stable operation with voltage and passive humidity cycling.<sup>14</sup>

Projects to address membrane performance under high temperature and low relative humidity operating conditions employ one or more of the following strategies. Phase segregation can be introduced by incorporating separate blocks of hydrophobic and hydrophilic functionality within the same polymer molecule or by producing two-polymer composites in which one polymer provides mechanical strength while the other polymer conducts protons. Non-aqueous proton conductors such as inorganic oxides, heteropolyacids, or ionic liquids enable fuel cell operation at temperatures greater than 100°C. Hydrophilic additives that maintain water content and conductivity at higher temperature are also under consideration.<sup>19</sup> Several researchers have achieved DOE's interim conductivity goal of 70 mS/cm at 30°C and 80% relative humidity.<sup>20</sup>

## Summary

Fuel cell systems are already being demonstrated in prototype vehicles, consumer electronics devices, materials handling equipment, and backup power and other stationary applications. Finally, the performance of the fuel cell system must be comparable in all respects to incumbent technologies, whether it is an internal combustion engine powering an automobile, a diesel generator set providing distributed generation, or a lithium-ion battery powering a consumer electronics device. While many promising new approaches have been developed in the last two years, technical challenges remain to achieve the upcoming 2010 and the ultimate 2015 system targets.

#### References:

(1) More, K. 2008 DOE Hydrogen Program Review, Washington, D.C., June 9-13, 2008. (2) More, K. 2007 DOE Hydrogen Program Review, Washington, D.C., May 14-19, 2007. (3) Yu, P.T., Kocha, S., Paine, L., Gu, W, Wagner, F., AIChE Spring National Meeting: Conference Proceedings, April 25-29, 2004. Publication: New York, NY: American Institute of Chemical Engineers, - Standard No: ISBN: 0816909423 (CD-ROM). (4) US Department of Energy. Information Resources. http://www.eere.energy.gov/ hydrogenandfuelcells/mypp (accessed Oct 24, 2008). (5) Motupally, S., International Workshop on Degradation Issues of Fuel Cells, September 2007, Crete, Greece. (6) Payne, T.L., Benjamin, T.G., Garland, N.L., Kopasz, J.P. ECS Trans., 2008, 16, in press. (7) Debe, M. 2007 DOE Hydrogen Program Review, Washington, D.C., May 14-18, 2007. (8) Viswanathan, V. 2008 DOE Hydrogen Program Review, Washington, D.C., June 9-13, 2008. (9) Merzougui, B., Carpenter, M.K., Swathirajan, S., U.S. Patent 20060257719, 2006. (10) Protsailo, L. in DOE Hydrogen Program 2005 Annual Progress Report, p. 739, U.S. Department of Energy, Washington D.C., 2005. (11) Shao, Y., Sui, J., Yin, G., and Gao, Y., Appl. Catal. B-Environ., 2008, 79, 89. (12) Zhang, L., Zhang, J., Wilkinson, D.P., Wang, H., J. Power Sources, 2006, 156, 171. (13) Zelenay, P. 2008 DOE Hydrogen Program Review, Washington, D.C., June 9-13, 2008. (14) Debe, M. 2008 DOE Hydroger Program Review, Washington, D.C., June 9-13, **2008**. (15) Schwiebert, K.E., Raiford, K.G., Escobedo, G., Nagarajan, G., *ECS* Trans., **2006**, *1*, 303. (16) Tang, Y., Kusoglu, A., Karlsson, A.M., Santare, M.H., Cleghorn, S., Johnson, W. B., *J. Power Sources*, **2008**, 175, 817. (17) Mittelsteadt, C. 2008 DOE Hydrogen Program Review, Washington, D.C. June 9-13, **2008**. (18) Escobedo, G., Barton, K., Choudhury, B., Curtin, D., Perry, R. 2007 Fuel Cell Seminar & Exposition, San Antonio, TX, p. 20, **2007**. (19) Martin, K.E., Garland, N.L., Kopasz, J.P., McMurphy, K.W. 236th ACS National Meeting, Philadelphia, PA, August 17-21, 2008. (20) Fenton, J. 2008 DOE Hydrogen Program Review, Washington, D.C., June 9-13, 2008



## Catalyst Materials for PEM Fuel Cells

#### For a complete list of fuel cell catalysts please visit *sigma-aldrich.com/catalyst*.

#### Platinum Group Metals on Carbon Support

| Name                           | Metal Loading                         | Matrix                                                                      | Cat. No.                  |
|--------------------------------|---------------------------------------|-----------------------------------------------------------------------------|---------------------------|
| Palladium on carbon            | loading 5 wt. %                       | carbon powder, wet support                                                  | 520845-10G<br>520845-50G  |
|                                | loading 5 wt. % (dry basis)           | carbon, wet support                                                         | 520837-10G                |
|                                | loading 3 wt. %                       | activated carbon support                                                    | 237515-10G<br>237515-50G  |
|                                | loading 1 wt. %                       | activated carbon support                                                    | 205672-25G<br>205672-100G |
| Platinum on activated charcoal | 10% Pt basis (based on dry substance) | activated charcoal support,<br>moistened with water (H <sub>2</sub> O ~50%) | 80983-1G<br>80983-5G      |
|                                | 5% Pt basis                           | activated charcoal support                                                  | 80982-5G<br>80982-25G     |
|                                | 10% Pt basis                          | activated charcoal support                                                  | 80980-1G<br>80980-5G      |
| Platinum on carbon             | loading 1 wt. %                       | activated carbon support                                                    | 205923-5G<br>205923-25G   |
| Ruthenium on carbon            | loading 5 wt. %                       | carbon support                                                              | 206180-25G<br>206180-100G |

#### Platinum Group Metals on Non-Carbon Support

| Name                           | Metal Loading   | Description | Cat. No.                  |
|--------------------------------|-----------------|-------------|---------------------------|
| Palladium on alumina           | loading 1 wt. % | powder      | 205702-25G                |
| Palladium on barium carbonate  | loading 5 wt. % | reduced     | 237523-10G                |
| Palladium on calcium carbonate | loading 5 wt. % | unreduced   | 214353-10G<br>214353-50G  |
| Platinum on alumina            | loading 5 wt. % | powder      | 205974-10G<br>205974-50G  |
|                                | loading 1 wt. % | powder      | 205966-25G<br>205966-100G |

#### **Unsupported Platinum Group Metals**

| Name            | Purity                                     | Description                                  | Cat. No.                               |
|-----------------|--------------------------------------------|----------------------------------------------|----------------------------------------|
| Platinum black  | 99.9+%                                     | powder, surface area ~25 m²/g                | 205915-250MG<br>205915-1G<br>205915-5G |
|                 | 99.9+% trace metals basis, fuel cell grade | powder, surface area 25-34 m <sup>2</sup> /g | 520780-1G<br>520780-5G                 |
|                 | 99.9+%                                     | powder, surface area 20-25 m <sup>2</sup> /g | 520802-1G<br>520802-5G                 |
|                 | 99.9+% trace metals basis                  | powder, surface area 27-36 m <sup>2</sup> /g | 520799-1G<br>520799-5G                 |
| Ruthenium black | ≥98%                                       | powder, surface area 17-26 m <sup>2</sup> /g | 326712-1G                              |

## Membrane Materials for PEM Fuel Cells

For a complete list of membrane materials including silica-composite membranes, please visit sigma-aldrich.com/membranes.

#### **Membranes**

| Name                                                                            | Equivalent Weight                                                                                                                                              | Dimensions                                           | Cat. No.   |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|
| Nafion <sup>®</sup> 350, perfluorinated membrane, reinforced with PTFE          | -                                                                                                                                                              | L × W 8 × 10 in.<br>thickness 0.01 in.               | 454737-1EA |
| Nafion perfluorinated membrane                                                  | eq. wt. 1,100                                                                                                                                                  | $L \times W 12 \times 12$ in.<br>thickness 0.005 in. | 541346-1EA |
| Nafion perfluorinated membrane                                                  | eq. wt. 1,100                                                                                                                                                  | L × W 8 × 10 in.<br>thickness 0.007 in.              | 274674-1EA |
| Nafion perfluorinated membrane                                                  | eq. wt. 1,100                                                                                                                                                  | L × W 12 × 12 in.<br>thickness 0.007 in.             | 292567-1EA |
| Nafion perfluorinated membrane, reinforced with poly(tetrafluoroethylene) fiber | A 'bimembrane' with one layer having equivalent weight 1,500 and thickness 0.001in., and the other layer having equivalent weight 1,000 and thickness 0.005in. | $L \times W 12 \times 12$ in.<br>thickness 0.006 in. | 565067-1EA |
| Nafion perfluorinated membrane, reinforced with poly(tetrafluoroethylene) fiber | eq. wt. 1,100                                                                                                                                                  | L × W 12 × 12 in.<br>thickness 0.007 in.             | 563994-1EA |
| Nafion perfluorinated membrane, reinforced with poly(tetrafluoroethylene) fiber | eq. wt. 1,050                                                                                                                                                  | L × W 12 × 12 in.<br>thickness 0.005 in.             | 564664-1EA |
| Nafion perfluorinated membrane                                                  | eq. wt. 1,100                                                                                                                                                  | L × W 12 × 12 in.<br>thickness 0.002 in.             | 676470-1EA |
|                                                                                 |                                                                                                                                                                |                                                      |            |

#### Solutions & Dispersions

| Name                                                                                                                   | Concentration                                                          | Equivalent Weight | Cat. No.                                    |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|---------------------------------------------|
| Nafion 117                                                                                                             | $\sim 5\%$ in a mixture of lower aliphatic alcohols and water          | -                 | 70160-25ML<br>70160-100ML                   |
| Nafion perfluorinated resin                                                                                            | 5 wt. % in mixture of lower aliphatic alcohols and water, water $45\%$ | eq. wt. 1,000     | 527084-25ML<br>527084-100ML                 |
| Nafion perfluorinated resin                                                                                            | 5 wt. % in mixture of lower aliphatic alcohols and water, water 45%    | eq. wt. 1,100     | 510211-25ML<br>510211-100ML                 |
| Nafion perfluorinated resin                                                                                            | 20 wt. % in lower aliphatic alcohols and water, water 34%              | -                 | 663492-25ML<br>663492-100ML                 |
| Nafion perfluorinated resin                                                                                            | 20 wt. % in mixture of lower aliphatic alcohols and water, water 20%   | eq. wt. 1,100     | 527122-25ML<br>527122-100ML                 |
| Nafion perfluorinated resin                                                                                            | 5 wt. % in lower aliphatic alcohols and water, water 15-20%            | eq. wt. 1,100     | 274704-25ML<br>274704-100ML<br>274704-500ML |
| Nafion perfluorinated resin, aqueous dispersion                                                                        | 10 wt. % in H <sub>2</sub> O                                           | eq. wt. 1,000     | 527114-25ML<br>527114-100ML                 |
| Nafion perfluorinated resin, aqueous dispersion                                                                        | 10 wt. % in H <sub>2</sub> O                                           | eq. wt. 1,100     | 527106-25ML<br>527106-100ML                 |
| Poly(styrene-ran-ethylene), sulfonated, cross-linkable                                                                 | 5 wt. % in 1-propanol                                                  | -                 | 659401-25ML<br>659401-100ML                 |
| Polystyrene- <i>block</i> -poly(ethylene- <i>ran</i> -butylene)- <i>block</i> -polystyrene, sulfonated                 | 5 wt. % in 1-propanol and dichloroethane                               | -                 | 448885-25ML<br>448885-100ML                 |
| Polystyrene- <i>block</i> -poly(ethylene- <i>ran</i> -butylene)- <i>block</i> -polystyrene, sulfonated, cross-linkable | 5 wt. % in 1-propanol and dichloroethane                               | -                 | 659444-25ML<br>659444-100ML                 |

#### **Other Membrane Materials**

| Name                                | Form                                                                                                 | Mol. Wt./ Eq. Wt                                            | Cat. No.                 |
|-------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------|
| Nafion NR50                         | pellets                                                                                              | eq. wt. ≤1250                                               | 309389-10G<br>309389-25G |
| Nafion perfluorinated resin, powder | powder                                                                                               | eq. wt. 1,100                                               | 495786-500MG             |
| Nafion SAC-13                       | fluorosulfonic acid Nafion <sup>®</sup> polymer on amorphous silica<br>10-20% (porous nanocomposite) | -                                                           | 474541-10G<br>474541-25G |
| Poly(vinylphosphonic acid)          | powder                                                                                               | -                                                           | 661740-1G                |
| Poly(2-vinylpyridine-co-styrene)    | granular                                                                                             | average $M_n \sim 130,000$ average $M_w \sim 220,000$ by LS | 184608-25G<br>184608-50G |





## Electrode Materials for Solid Oxide Fuel Cells (SOFC)

For a complete list of electrode materials please visit *sigma-aldrich.com/fuelcell*.

#### **Anode Materials**

| Name                                      | Description                     | Composition                                                  | Cat. No.   |
|-------------------------------------------|---------------------------------|--------------------------------------------------------------|------------|
| Nickel oxide - Cerium samarium oxide      | NiO/SDC<br>for coatings         | Cerium Samarium Oxide 40 wt. %<br>Nickel Oxide 60 wt. %      | 704210-10G |
| Nickel oxide - Yttria-stabilized zirconia | NiO/YSZ<br>for coatings         | Nickel Oxide 66 wt. %<br>Yttria-Stabilized Zirconia 34 wt. % | 704202-10G |
| Nickel oxide - Yttria-stabilized zirconia | NiO/YSZ<br>general applications | Nickel Oxide 60 wt. %<br>Yttria-Stabilized Zirconia 40 wt. % | 704229-10G |

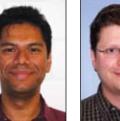
#### **Cathode Materials**

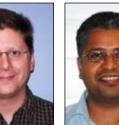
| Name                               | Description                            | Composition                                                                                                                 | Cat. No.   |
|------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------|
| Lanthanum strontium cobalt ferrite | LSCF 6428                              | $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3}$                                                                                     | 704288-10G |
| Lanthanum strontium cobalt ferrite | LSCF/GDC composite cathode powder      | $\begin{array}{l}(Ce_{0.9}Gd_{0.1})O_{1.95}\;50\%\\(La_{0.60}Sr_{0.40})(Co_{0.20}Fe_{0.80})O_{3}\;50\%\end{array}$          | 704253-10G |
| Lanthanum strontium manganite      | LSM-20/YSZ<br>composite cathode powder | $\begin{array}{l}(La_{0.80}Sr_{0.2})MnO_{3}~50\%\\(Y_{2}O_{3})_{0.08}(ZrO_{2})_{0.92}~50\%\end{array}$                      | 704245-10G |
| Lanthanum strontium manganite      | LSM-35                                 | $La_{0.60}Sr_{0.35}MnO_{3}$                                                                                                 | 704261-10G |
| Lanthanum strontium manganite      | LSM-20                                 | (Ce <sub>0.9</sub> Gd <sub>0.1</sub> )O <sub>1.95</sub> 50%<br>(La <sub>0.80</sub> Sr <sub>0.20</sub> )MnO <sub>3</sub> 50% | 704296-10G |
| Lanthanum strontium manganite      | LSM20-GDC10                            | $La_{0.80}Sr_{0.20}Mn0_{3}$                                                                                                 | 704237-10G |

## Electrolyte Materials for Solid Oxide Fuel Cells (SOFC)

For a complete list of electrolyte materials please visit *sigma-aldrich.com/fuelcell*.

| Name                                  | Additives                     | Particle Size | Surface Area                           | Cat. No.                   |
|---------------------------------------|-------------------------------|---------------|----------------------------------------|----------------------------|
| Cerium(IV) oxide-calcium doped        | calcium 10 mol % as dopant    | <100 nm       | surface area 100-120 m <sup>2</sup> /g | 572403-25G                 |
| Cerium(IV) oxide-gadolinium doped     | gadolinium 20 mol % as dopant | <100 nm       | surface area >100 m <sup>2</sup> /g    | 572357-25G                 |
|                                       | gadolinium 10 mol % as dopant | <100 nm       | surface area >100 m <sup>2</sup> /g    | 572330-25G                 |
| Cerium(IV) oxide-samaria doped        | samaria 15 mol % as dopant    | <100 nm       | surface area 100-120 m <sup>2</sup> /g | 572365-25G                 |
| Cerium(IV) oxide-yttria doped         | yttria 15 mol % as dopant     | <100 nm       | surface area 100-120 m <sup>2</sup> /g | 572381-25G                 |
| Cerium(IV)-zirconium(IV) oxide        | -                             | <50 nm (BET)  | -                                      | 634174-25G<br>634174-100G  |
| Zirconium(IV) oxide-yttria stabilized | $Y_2O_3$ 0-10% as stabilizer  | <100 nm (BET) | BET surf. area 40-60 m <sup>2</sup> /g | 544779-5G<br>544779-25G    |
|                                       | yttria 3% as stabilizer       | ≤100 nm       | surface area 100-120 m <sup>2</sup> /g | 572322-25G                 |
|                                       | yttria 8% as stabilizer       | ≤100 nm       | surface area >100 m <sup>2</sup> /g    | 572349-25G                 |
|                                       | yttria ~8% as stabilizer      | ~700 nm       | surface area 5.5 m <sup>2</sup> /g     | 464228-100G<br>464228-500G |
|                                       | yttria ~5.3% as stabilizer    | ~500 nm       | surface area 6.9 m <sup>2</sup> /g     | 464201-100G<br>464201-500G |





Visit the Interactive Periodic Table at sigma-aldrich.com/periodic

#### sigma-aldrich.com

## SIGMA-ALDRICH®

## Polymer-based Materials for Printed Electronics: Enabling High Efficiency Solar Power and Lighting





Ritesh Tipnis\*, Darin Laird and Mathew Mathai Plextronics, Inc. 2180 William Pitt Way Pittsburgh, PA 15238 \*Email: rtipnis@plextronics.com

## Introduction

The soaring global demand for energy has created an urgent need for new energy sources that are both cost-competitive and eco-friendly. Renewable energy technology, such as solar power and energy efficient solid-state lighting (SSL), could help satisfy these pressing needs. Solar power, however, is not widely commercialized because the cost of today's silicon-based technology often limits its use mainly to large, on-grid applications. Similarly, the complex and expensive processes required for current SSL technologies have inhibited wide-scale deployment.

Printed electronics (PE) holds the promise of enabling low-cost, scalable solutions to address the issues faced by today's solar and SSL technologies. PE exploits the ability of organic materials to be solution processed onto large area substrates at a fraction of the manufacturing cost associated with conventional vapor deposition techniques. As such, low-cost applications in lighting, power and circuitry are expected to fuel the growth of the PE industry from the current \$1 billion to a \$300 billion market in the next 20 years.<sup>1</sup> Plextronics, Inc. is helping seed this market by developing materials for applications in organic photovoltaic (OPV) devices and organic light emitting diodes (OLED), with eventual applications in solar power and SSL.

#### **Organic Light Emitting Diodes**

In 2001, the energy consumption for lighting in buildings within the US was 8.2 quads (1 quad =  $1.055 \times 10^{18}$  joules), representing 22% of the total energy consumed.<sup>2</sup> It is forecasted that efficient lighting can reduce 3.5 quads of electricity consumption by 2025. This translates to 41 less 1000 MW power plants, resulting in tremendous economic and environmental benefits. Solid-state white lighting, driven by OLED technology, can help realize this vision with energy efficient products to replace fluorescent lighting sources for general illumination beginning in 2010. There also exists significant opportunity for implementation in diffuse lighting applications that require flexibility, color tunability and low energy consumption.

The display industry has already begun to employ OLED materials in applications such as cell phones, mp3 players, and, most recently, televisions.<sup>3</sup> However, significant market penetration remains elusive because performance parameters, such as device efficiency, lifetime, and operating voltage, require further optimization. In addition, considerable capital investment is required to retrofit manufacturing lines, which today use a series of vacuum-deposition processes for each color. Utilizing a manufacturing process based on solution processing will enable significantly higher materials' utilization and lower energy consumption, whilst being cost-effective. Also, the use of an effective, solution-processable Hole Injection Layer (HIL) in the device stack directly impacts the performance of the device. An HIL enables efficient hole injection between the electrode and the neighboring light emitting/transport layers by reducing the energy barriers between the electrode and the semiconducting laver.<sup>4</sup> Improved hole injection implies the capability to modulate the charge balance within the device, which in turn improves device lifetime. In addition, the effective reduction of energy barriers at interfaces lowers the operating voltage for OLEDs and also results in superior luminescent performance.<sup>5</sup> Besides these functions, the HIL also planarizes the anode surface to prevent shorts, and blocks electrons from flowing out of the emitting layer and into the anode without recombination.6 All of these factors contribute to improvements in OLED performance, leading up to a commercially viable technology.

#### **Organic Photovoltaics**

A typical US coal-power plant emits, per GWh, about 1000 tons of CO<sub>2</sub>, 8 tons of SO<sub>2</sub>, 3 tons of NO<sub>x</sub>, and 0.4 tons of particulates.<sup>7</sup> This has led to legitimate environmental concerns, which renewable energy sources like solar power can mitigate. However, today's solar technology does not provide a clear path to meet the soaring demand. At the same time, the current primary source of solar technology, silicon-based solar energy, has not proven to be cost-effective due to significant raw material costs as well as the high infrastructure cost. The levelized cost of power from today's solar installations is as much as ten times that of grid-supplied power depending on size of installation and geographical location. Second generation PV devices based on thin films of amorphous silicon, cadmium telluride (CdTe) or copper indium gallium diselenide (CIGS) are relatively inexpensive compared to silicon, but have not yet achieved wide scale adoption because they are still not cost competitive with grid pricing.

Polymer based OPV cells offer the potential to play a significant role as a zero-emission source of energy during the actual power generation process. However wide-scale commercialization requires a pathway towards large-scale, economical manufacturing. While low costs of raw materials and less complex manufacturing represent a major advantage in comparison to the currently dominant silicon-based solar cells, gains in efficiency are necessary to enable commercialization of OPV. Polymer-fullerene p-n junction (PNJ) solar cells are a promising approach to achieve such performance gains.

## Materials for Printed Electronics

#### **Polymer Semiconductors**

Plextronics' Plexcore<sup>®</sup> technology platform is comprised of semiconducting polymers and solution-processable inks that are designed to maximize the efficiency, lifetime and stability of PE devices. Plexcore OS, in particular, is a p-type organic semiconductor based on regioregular poly 3-hexylthiophene, RR-P3HT (**Figure 1**), a semi-crystalline, semiconducting polymer with exceptional spectroscopic and electronic properties. The material is easily synthesized via a method developed Plextronics' co-founder, Dr. Richard D. McCullough.<sup>8-11</sup> Plexcore OS 2100 (**Aldrich Prod. No. 698997**) is a grade of P3HT specifically designed for OPV and demonstrates the following properties:

- Electronics grade purity (<15 ppm metals) and high regioregularity enables high OPV performance through efficient light harvesting and hole transport.
- Readily formulated into printable inks with tailored material properties for a wide range of electronic applications.
- Consistent material supply via large-scale production provides minimized device and processing variability.



Figure 1. Poly 3-hexylthiophene (Aldrich Prod. Nos. 698997, 698989)

Data from recent batches of Plexcore OS 2100 demonstrate a production process that delivers consistent material properties batch-to-batch. **Figures 2** and **3** provide batch-to-batch data for molecular weight (MW)/polydispersity index (PDI) and the metals content, respectively. Appropriate nanoscale morphology of thin films of RR-P3HT is required to achieve high charge carrier mobilities, a key factor in enabling efficient OPV device performance. Regioregularity, MW, and PDI are all known to influence this morphology, where, in general, high MW and low PDI deliver world-class performance. Maintaining these material properties in a controlled production process enables the end user to develop reproducible material processing and device fabrication. As such, variability is minimized to enable development focus in other areas such as device architecture.

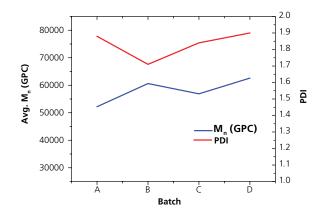



Figure 2. Plexcore OS 2100 example batch data—molecular weight (left) and PDI (right).

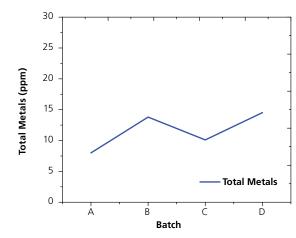



Figure 3. Plexcore OS 2100 example batch data—total metals

The metals content of organic materials has not been comprehensively studied to determine the impact on OPV performance. It is believed, however, that higher metals content may result in increased charge trapping within the thin film, which may lower charge carrier mobility, resulting in poor device performance. Within the OLED industry, metals content has been known to cause degradation and reduced device efficiency and lifetime. As such, Plextronics focuses on delivering materials with electronics-grade purity to minimize and eliminate potentially detrimental degradation mechanisms due to material purity. The combination of these properties leads to consistency in the performance of OPV devices fabricated with different batches of Plexcore OS 2100, as seen in **Figure 4**.

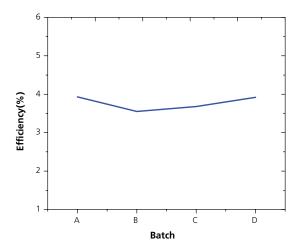



Figure 4. OPV efficency for P3HT:PCBM. Plexcore OS 2100 example batch data demonstrating OPV performance



The PNJ solar cell consists of an active layer that is a composite of a p-type (electron donating) light harvesting polymer and an n-type (electron accepting) semiconductor. Figure 5 shows the basic device architecture for an OPV cell comprising a photoactive layer. For the purposes of this discussion, the photoactive layer is based on a blend of Plexcore® OS 2100 (P3HT) and [6,6] phenyl C<sub>61</sub> butyric acid methyl ester (PCBM), deposited on top of an organic hole transport layer (HTL), that planarizes the transparent anode, and also facilitates the collection of positive charge carriers (holes) from the light-harvesting layer. These photo-generated charges migrate to the collecting electrodes through this intimately mixed interpenetrating network. Examples of the best performing polymer organic cells have been based on the P3HT:PCBM junction.<sup>12-15</sup> The system is characterized by phase-separation of the p- and n-components of the composite into discrete manifolds beneficial for charge transport and exciton dissociation. The I-V data in Figure 6 represents a single-junction OPV cell that was certified by the National Renewable Energy Laboratory (NREL) at 3.39% efficiency; a typical performance in a P3HT:PCBM system.

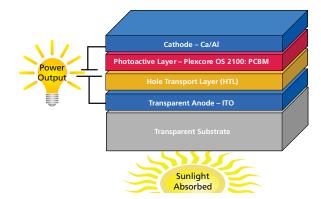



Figure 5. OPV device stack. ITO: Indium Tin Oxide PCBM: [6,6] phenyl  $C_{61}$  butyric acid methyl ester Ca/Al: Calcium/Aluminium

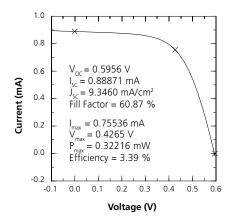



Figure 6. NREL certified I-V curve for Plexcore OS 2100:PCBM OPV cell. The device temperature is  $27.0 \pm 3.0$  °C, the device area is 0.095 cm<sup>2</sup> and the irradiance is 1000.0 W/m<sup>2</sup>.

Several material parameters directly impact short circuit current density ( $J_{sc}$ ), open circuit voltage ( $V_{oc}$ ), fill factor (FF), and ultimately the efficiency ( $\eta$ ) of an OPV device, as depicted in **Table 1**.  $V_{oc}$  is a measure of cell potential and typically scales with the difference between lowest unoccupied molecular orbital (LUMO) level of the n-type semiconductor and the

highest occupied molecular orbital (HOMO) level of the p-type semiconductor. J<sub>ee</sub> is a measure of the maximum current density that could, in practice, be produced by a cell. It is principally influenced by the band-gap of the light-harvesting organic materials in an OPV device. Power In is typically defined as 1000 W/m<sup>2</sup>, which is equivalent to 1 sun (AM 1.5G). Conjugated polymers have strong, broad light absorption and most are semiconducting materials that exhibit a range of band gaps. FF is a figure of merit for how much power the cell can output versus the ideal power defined by the  $J_{sc}$  and  $V_{oc}$  product. Many material properties, such as nanoscale morphology and charge carrier mobilities of the electrons and holes, affect the photophysical processes in an OPV cell. When optimized, this process leads to efficient charge separation and extraction; and FF is a composite parameter that includes contributions from all of these processes. Achieving > 7% cell efficiencies will require tailoring of all of these properties in combination. In addition, advancements in packaging, device architecture, and electrode engineering will contribute to the best performance of organic solar cells for commercial applications. Plextronics is actively pursuing development of higher efficiencies with the Plexcore PV platform. NREL-certified efficiencies in excess of 5% have already been achieved with improvements in materials and morphology.<sup>16</sup>

#### $\eta$ = V<sub>oc</sub> \* J<sub>sc</sub> \* FF / Power In

Table 1. Factors Influencing OPV Efficiency

| Drivers of Efficiency                 | Material and Ink Properties                                     |
|---------------------------------------|-----------------------------------------------------------------|
| V <sub>oc</sub> (V)                   | Molecular Energies                                              |
| Open Circuit Voltage                  | <ul> <li>LUMO<sub>n-type</sub>-HOMO<sub>p-type</sub></li> </ul> |
| J <sub>sc</sub> (mA/cm <sup>2</sup> ) | • E <sub>g</sub> (Band gap)                                     |
| Short Circuit Current Density         | • $\alpha$ (Absorption coefficient)                             |
|                                       | Charge Extraction                                               |
| FF                                    | • p/n charge carrier mobility balance                           |
| Fill Factor                           | Bulk Heterojunction Morphology                                  |

#### **Polymer Conductors**

Regioselective polymerization techniques used for synthesizing P3HT allow fine control of the absolute structure of the polymeric materials which support a variety of functionalities, thus enabling a greatly expanded platform for polymer design.<sup>17</sup> For example, Plextronics has developed an inherently doped sulfonated solution of Poly(thiophene-3-[2-(2-methoxyethoxy) ethoxy]-2,5-diyl) (see **Figure 7**). When combined with a matrix polymer and other additives in a solvent system, this ink formulation functions as an effective hole injection layer (HIL) for OLED devices<sup>18</sup> and as a hole transport layer (HTL) for OPV devices. Plextronics provides 2% concentration solutions for application as an HIL - Plexcore OC 1100 (**Aldrich Prod. No. 699799**) and Plexcore<sup>®</sup> OC 1200 (**Aldrich Prod. No. 699780**).

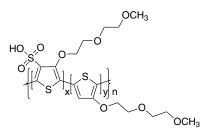



Figure 7. Poly(thiophene-3-[2-(2-methoxyethoxy)ethoxy]-2,5-diyl), sulfonated (Aldrich Prod. Nos. 699799, 699780)

olymer-based Materials or Printed Electronics

Some of the performance benefits that Plexcore<sup>®</sup> OC offers as an HIL include:

- Reduced acidity, preventing anode degradation and ensuring improved device lifetime.
- Tunable properties such as work function, resistivity, surface energy, and viscosity, enabling researchers to optimize device performance.
- Compatible with multiple solvent systems and aqueous-based solutions, facilitating a variety of processing techniques.

The ability to solution process the HIL presents several advantages, including broad materials selection, flexibility in molecular design, lower materials consumption and processability at ambient temperature and atmospheric pressure. One of the unique features of Plexcore OC inks is the ability to be tuned to match the work function, resistivity, and viscosity, for example, required for specific device architectures and application techniques. This tunability provides the versatility needed to develop new solid state lighting (SSL) device stacks.

**Figure 8** shows a typical Phosphorescent LED (PHOLED) device architecture where the HIL layer, such as Plexcore OC 1100 or 1200, is deposited onto the anode via spin coating. **Figure 9** shows representative performance data for a green PHOLED made using Plexcore OC. The turn-on voltage of the device is at the band gap of the emitter, indicating low interfacial energy barriers, which could be attributed to efficient hole injection. This leads to efficiencies as high as 14-15 cd/A being obtained in a PHOLED device architecture, with modest efficiency loss as the current density is increased.

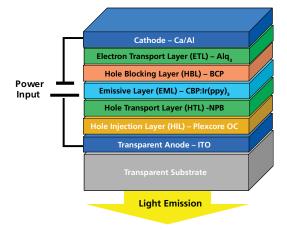
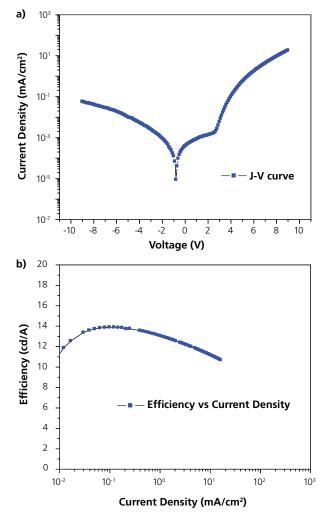
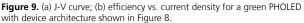



Figure 8. OLED device stack

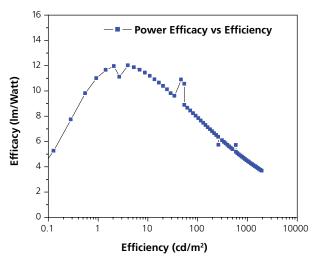

ITO: Indium Tin Oxide (**see table on page 98**) NPB: *N*,*N'*-Bis(naphthalen-1-yl)-*N*,*N'*-bis(phenyl)benzidine


(Aldrich Prod. No. 556696)

CBP: 4,4'-*N*,N'-dicarbazole-biphenyl (**Aldrich Prod. No. 699195**) Ir(ppy)<sub>3</sub>: *tris*-[2-phenylpyridinato-C2,N]iridium(III) (**Aldrich Prod. No. 694924**) BCP: 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine)

(Aldrich Prod. No. 699152)

Alq₃: *tris*-8-hydroxyquinoline aluminium (**Aldrich Prod. No. 697737**) Ca/Al: Calcium/Aluminium










One of the critical aspects for a SSL luminaire is the ability to achieve high brightness at low operating voltage. **Figure 10** shows the power efficiency of the device shown on the previous page as a function of operating brightness. The presence of the HIL reduces injection barriers leading to lower operating voltage and improved efficacy (Lumen/Watt) at higher brightness. Maintaining higher efficacy at higher brightness more light output for lower cost. It is expected that SSL products enabled by Plexcore® OC will help realize the energy efficient lighting of the future.



**Figure 10.** Power efficiency of a PHOLED utilizing Plexcore OC as the hole injection layer (HIL). As observed, the loss in power efficacy is minimized up to 1,000 units of brightness.

## Conclusion

Printed Electronics could dictate the future of electronics and the energy industry by employing OPV and OLED devices in various applications, such as solar modules and luminaires based on solid state lighting. In addition, applications that integrate light and power may enable a new market segment for economical and environmentally friendly products. Plextronics' polymer products such as Plexcore OS have the potential to yield high-efficiency OPV devices to serve the renewable energy market. Also, Plexcore OC ink systems that have already demonstrated exceptional performance in OLED devices, can enable SSL products and help meet the low energy consumption demands of the lighting market.

#### References:

(1) Nanomarkets, Organic Electronics: A Market & Technology Assessment. 2007
(2) Navigant, DOE, Lighting Research & Development Report 2006. (3) Sony Corporation. www.sonystyle.com (accessed Oct 24, 2008). (4) Gong, X. M. D., Moses, D., Heeger, A. J., Liu, S., Jen, K. Appl. Phys. Lett. 2003, 83, 183. (5) Chen, S., Wang, C. Appl. Phys. Lett. 2005, 85, 765. (6) Kraft, A., Grimsdale, A. C., Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402. (7) Fthenakis, V. M. In European Materials Research Society Spring Meeting, Nice, France, May 29-June 2. 2006. (8) McCullough, R. D., Lowe, R. S. J. Chem. Soc., Chem. Commun 1992, 70. (9) McCullough, R. D., Lowe, R. S. J. Chem. Soc., Chem. Commun 1992, 70. (9) McCullough, R. D., Lowe, R. S., Jayaraman, M., Anderson, D. L. J. Org. Chem. 1993, 58, 904. (10) McCullough, R. D., Lowe, R. S., Jayaraman, M., Ewbank, P. C., Anderson, D. L., Tristam-Nagle, S. Synth. Met. 1993, 55, 1198.
(11) McCullough, R. D., Williams, S. P., Tristam-Nagle, S., Jayaraman, M., Ewbank, P. C., Mulliams, S. P., Tristam-Nagle, S., Jayaraman, M., Ewbank, P. C., Anderson, D. L., Tristam-Nagle, S. Jayaraman, M., Ewbank, P. C., Anderson, D. L., Tristam-Nagle, S. Jayaraman, M., Ewbank, P. C., Mulliams, S. P., Tristam-Nagle, S., Jayaraman, M., Ewbank, P. C., Anderson, D. L., Tristam-Nagle, S. Jayaraman, M., Ewbank, P. C., Anderson, D. L., Tristam-Nagle, S. Jayaraman, M., Ewbank, P. C., Miller, L. Synth. Met. 1995, 67, 279. (12) Kazmerski, L. L. J. Electron Spectrosc. Relat. Phenom. 2006, 150, 105. (13) Li, G., Shrotriya, V., Huang, J., Yao, Y.; Moriarty, T., Emery, K., Yang, Y. Nature Materials 2005, 4, 864. (14) Ma, W.,Yang, C., Gong, X., Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. (15) Reyes-Reyes, M., Kim, K., Carroll, D. L. Appl. Phys. Lett. 2005, 87, 083506. (16) Green, M. A., Emery, K., Hishikawa, Y., Warta, W. Prog. Photovolt: Res. Appl. 2008, 16, 435. (17) Lowe, R. S., Khersonsky, S. M., McCullough, R. D. Adv. Mater. 1999, 11, 250. (18) Shao, Y., Sui, J., Yin, G.,

## **Organic Electronic Materials: Plexcore Products**

#### Poly(3-hexylthiophene-2,5-diyl)-Electronic Grade

| Application                                                                                                                      | Structure                                                       | Purity                                                                               | Description                          | Cat. No.                  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|---------------------------|
| High molecular weight; ultra-high purity P3HT<br>optimized for use in organic photovoltaics (OPV)<br>research and devices.       | $CH_2(CH_2)_4CH_3$                                              | 99.995% trace metals basis, >98%<br>head-to-tail regioregular (HNMR)<br>regioregular | average M <sub>n</sub> 45,000-65,000 | 698997-250MG<br>698997-1G |
| High purity P3HT for organic electronics research.<br>Material optimized for use in active layers of OFETs<br>and other devices. | CH <sub>2</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>3</sub> | 99.995% trace metals basis, >95%<br>head-to-tail regioregular (HNMR)<br>regioregular | average M <sub>n</sub> 25,000-35,000 | 698989-250MG<br>698989-1G |

#### Poly(thiophene-3-[2-(2-methoxyethoxy)ethoxy]-2,5-diyl), sulfonated solution-Electronic Grade

Plexcore OC 1100 (699799) and 1200 (699780) are organic conductive inks suitable for spin coating applications and as hole injection layers in organic electronic devices.

| Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purity                     | Description                                      | Cat. No.    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------|-------------|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≥99.99% trace metals basis | 2% in ethylene glycol monobutyl ether/water, 3:2 | 699780-25ML |
| $\overset{HO-\overset{S}{\underset{O}{\overset{O}}}_{T},\overset{O}{\underset{O}{\overset{O}{\overset{O}}}_{T}},\overset{O}{\underset{O}{\overset{O}{\overset{O}{\overset{O}}}}_{T}},\overset{OOCH_3}{\underset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}}{\overset{O}}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}}{\overset{O}}}}}}}}}$ | ≥99.99% trace metals basis | 2% in 1,2-propanediol/isopropanol                | 699799-25ML |

## **Electron Acceptors**

For a complete list of electron acceptors and to view the PCBM library, please visit *sigma-aldrich.com/oel*.

| Name                                                                            | Structure    | Purity | Cat. No.                             |
|---------------------------------------------------------------------------------|--------------|--------|--------------------------------------|
| [6.6] Diphenyl C $_{\rm 62}$ bis(butyric acid methyl ester)(mixture of isomers) | OCH3<br>OCH3 | 99.5%  | 704326-100MG                         |
| 7,7,8,8-Tetracyanoquinodimethane                                                |              | 98%    | 157635-1G<br>157635-5G<br>157635-10G |
| 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane                            |              | 97%    | 376779-5MG<br>376779-25MG            |

## Organic Photovoltaics Materials: Light-Emitters and Dopants-Sublimed Grade\*

For a complete list of light-emitters and dopants please visit sigma-aldrich.com/oel.

| Name                                                                                                                           | Structure | Purity                        | Absorption/ Fluorescence ( $\lambda ex/\lambda em$ )           | Cat. No.                     |
|--------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|----------------------------------------------------------------|------------------------------|
| Anthracene, sublimed grade                                                                                                     |           | ≥99%                          | -                                                              | 694959-5G<br>694959-25G      |
| Perylene, sublimed grade                                                                                                       |           | ≥99.5%                        | -                                                              | 394475-1G<br>394475-5G       |
| Rubrene, sublimed grade                                                                                                        |           | -                             | λ <sub>max</sub> 299 nm                                        | 551112-100MG<br>551112-500MG |
| Tris-(8-hydroxyquinoline)aluminum,<br>sublimed grade                                                                           |           | 99.995%<br>trace metals basis | 390 / 519 nm                                                   | 697737-1G                    |
| Tris(dibenzoylmethane)<br>mono(1,10-phenanthroline)europium(III),<br>sublimed grade                                            |           | -                             | $\lambda_{\text{max}}$ 228 nm, 355 / 615 nm in tetrahydrofuran | 538965-250MG                 |
| Tris[1-phenylisoquinoline-C <sup>2</sup> ,/V]iridium(III), sublimed grade                                                      |           | 99%                           | 324 / 615 nm in tetrahydrofuran                                | 688118-250MG                 |
| Tris[2-phenylpyridinato-C <sup>2</sup> ,M]iridium(III),<br>sublimed grade<br>*TGA/DSC Lot specific traces available upon reque |           |                               | 305 / 507 nm in chloroform                                     | 694924-250MG                 |

\*TGA/DSC Lot specific traces available upon request

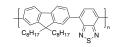


## Organic Photovoltaic Materials: Indium Tin Oxide/Indium Oxide

For a complete list of ITOs please visit *sigma-aldrich.com/oel*.

#### Indium Tin Oxide/Indium Oxide Coated Slides & PET Sheets

| Product Description                                 | Surface Resistivity | Cat. No.                     |
|-----------------------------------------------------|---------------------|------------------------------|
| Indium tin oxide coated glass slide                 | 8-12 Ω/sq           | 703192-10PAK                 |
| Indium tin oxide coated glass slide                 | 30-60 Ω/sq          | 703184-10PAK                 |
| Indium tin oxide coated glass slide                 | 70-100 Ω/sq         | 703176-10PAK                 |
| Indium tin oxide coated aluminosilicate glass slide | 5-15 Ω/sq           | 576360-10PAK<br>576360-25PAK |
| Indium tin oxide coated glass slide                 | 8-12 Ω/sq           | 578274-10PAK<br>578274-25PAK |
| Indium tin oxide coated glass slide                 | 15-25 Ω/sq          | 636916-10PAK<br>636916-25PAK |
| Indium tin oxide coated glass slide                 | 30-60 Ω/sq          | 636908-10PAK<br>636908-25PAK |
| Indium tin oxide coated glass slide                 | 70-100 Ω/sq         | 576352-10PAK<br>576352-25PAK |
| Indium oxide coated PET                             | ≤10 Ω/sq            | 700177-5PAK<br>700177-10PAK  |
| Indium oxide coated PET                             | 60-100 Ω/sq         | 702811-5PAK<br>702811-10PAK  |
| Indium tin oxide coated PET                         | 35 Ω/sq             | 639311-1EA<br>639311-5EA     |
| Indium tin oxide coated PET                         | 45 Ω/sq             | 668559-1EA<br>668559-5EA     |
| Indium tin oxide coated PET                         | 60 Ω/sq             | 639303-1EA<br>639303-5EA     |
| Indium tin oxide coated PET                         | 100 Ω/sq            | 639281-1EA<br>639281-5EA     |


#### Indium Tin Oxide/Indium Oxide Powders

| Name                         | Particle Size               | Description                | Cat. No.                  |
|------------------------------|-----------------------------|----------------------------|---------------------------|
| Indium(III) oxide            | particle size <100 nm (BET) | 99.9% trace metals basis   | 632317-5G<br>632317-25G   |
| Indium tin oxide             | -325 mesh                   | 99.99+% trace metals basis | 494682-25G<br>494682-100G |
| Indium tin oxide             | particle size <50 nm        | -                          | 544876-5G<br>544876-25G   |
| Indium tin oxide, dispersion | particle size <100 nm (DLS) | 30 wt. % in isopropanol    | 700460-25G<br>700460-100G |

## **Light-Emitting Polymers**

 $\begin{array}{c} \hline \\ \hline \\ \hline \\ CH_3(CH_2)_6CH_2 CH_2(CH_2)_6CH_3 \end{array} \\ \end{array}$ 

F8T2 (**Aldrich Prod. No. 685070**)  $\lambda_{em}$  497 nm in chloroform



F8BT (**Aldrich Prod. No 698687**)  $\lambda_{em}$  515-535 nm in chloroform

Sigma-Aldrich® offers a wide variety of products for use in organic light-emitting diodes. Our product offerings include, but are not limited to:

- Electron Transport Materials
- Hole Transport Materials
- Hole Injection Materials
- Light-Emitting Polymers
- Polymer Hole and Transport Materials

Make Sigma-Aldrich Materials Science your one-stop source for organic electronic materials. Visit *sigma-aldrich.com/oel* for a full listing of products and literature pertaining to this field of study.

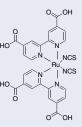
sigma-aldrich.com

SIGMA-ALDRICH®



## Ruthenium-Based Dyes for Dye Solar Cells

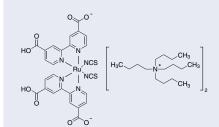



Dye solar cells (DSCs) are third generation solar cells with the promise of high efficiency combined with low production costs. While present day DSCs provide light-to-electricity conversion of up to 11%, significant further improvement is envisaged through optimized materials and novel cell and module architectures.

In dye sensitized solar cells, the dye is one of the key components for high-power conversion efficiencies. In recent years, considerable developments have been made in the engineering of the dye structure to enhance the performance of the system.

Particularly interesting are the amphiphilic homologues of the pioneering ruthenium based N-3 dye, for example, Z-907 (**Aldrich Prod. No. 703168**). The amphiphilic dyes display several advantages over the N-3 dye:

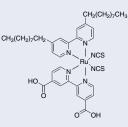
- 1) a higher ground state pK<sub>a</sub> of the binding moiety thus increasing electrostatic binding onto the TiO<sub>2</sub> surface at lower pH values
- 2) decreased charge on the dye, attenuating electrostatic repulsion between adsorbed dye units and thereby increasing dye loading
- 3) increased stability of solar cells towards water-induced dye desorption
- 4) oxidation potential of these complexes is cathodically shifted compared to that of the N-3 sensitizer, which increases the reversibility of the ruthenium III/II couple, leading to enhanced stability.


#### **Ruthenium Dyes**



#### Aldrich Prod. No. 703206

N-3: Basic dye for use in DSC. It efficiently sensitizes wide band gap oxide semiconductors such as titanium oxide up to wavelengths of 700nm.


Molecular Formula: C<sub>26</sub>H<sub>16</sub>N<sub>6</sub>O<sub>8</sub>RuS<sub>2</sub>, Formula Weight: 705.64



#### Aldrich Prod. No. 703214

N-719 dye: Modification of N-3 to increase cell voltage and is the most common high performance dye.

Molecular Formula: C<sub>58</sub>H<sub>86</sub>N<sub>8</sub>O<sub>8</sub>RuS<sub>2</sub>, Formula Weight: 1188.55



Aldrich Prod. No. 703168

Z-907 dyes: Hydrophobic dye, very efficiently sensitizes wide band-gap titanium oxide up to 750 nm.

Molecular Formula: C<sub>42</sub>H<sub>52</sub>N<sub>6</sub>O<sub>4</sub>RuS<sub>2</sub>, Formula Weight: 870.10

## U.S. Department of Energy's Materials Research for Advanced Lithium Ion Batteries







David Howell<sup>1\*</sup>, Tien Duong<sup>1</sup>, John B. Deppe<sup>2</sup>, Irwin Weinstock<sup>3</sup> <sup>1</sup>U.S. Department of Energy, Vehicle Technologies Program, 1000 Independence Avenue

Washington DC 20585

<sup>2</sup>Deppe Consulting, Washington D.C, 20585

- <sup>3</sup>Sentech, Inc. 7475 Wisconsin Ave., Suite 900, Bethesda, MD 20814
- \* E-mail: David.Howell@ee.doe.gov

## Introduction

Increasing fuel costs and concerns about greenhouse gas emissions have spurred the growth in sales of hybrid electric vehicles (HEVs) that carry a battery pack to supplement the performance of the internal combustion engine (ICE). The next generation of hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), will have the ability to recharge their energy storage system with electricity from a standard electric outlet. The key advantage of PHEVs is that they can use this stored electrical energy to propel the vehicle, meeting between 10 and 40 miles of urban driving needs with virtually no gasoline use, thus reducing petroleum consumption by the combustion engine. However, batteries used in today's power-assist HEVs do not have sufficient energy storage capability to meet the requirements of these advanced vehicles. The DOE, in partnership with the U.S. Advanced Battery Consortium (USABC, a partnership involving the three major domestic automakers formed to develop electrochemical energy storage technologies for fuel cell, hybrid, and electric vehicles), has been developing lithium rechargeable battery technology for several years. These efforts have resulted in significant improvements in the performance, life, and abuse resistance of batteries for vehicle applications.

## **Development Goals and Approach**

The DOE, through its national laboratories has conducted vehicle analyses and battery sizing studies to recommend battery performance requirements for use by the USABC when soliciting proposals from potential battery developers and for benchmarking progress in the various development programs.<sup>1</sup> These analyses have shown that the energy storage requirements for PHEVs depend on the vehicle platform, vehicle performance on various drive cycles, hybrid configuration, operating strategy, and all-electric range capability, i.e., the total miles that can be driven using the stored energy. Battery performance requirements for vehicles with an all-electric range of 10 and 40 miles (PHEV 10 and PHEV 40) are summarized in **Table 1**.

Table 1. Battery power and energy requirements (at  $30^{\circ}$ C) for PHEV 10 and PHEV 40

| Characteristics at EOL (End of Life)                  |                          | 2012<br>Targets | 2016<br>Targets |
|-------------------------------------------------------|--------------------------|-----------------|-----------------|
| All Electric range                                    | miles                    | 10              | 40              |
| Peak Pulse Discharge Power-2 seconds                  | kW                       | 50              | 46              |
| Peak Pulse Discharge Power-10 seconds                 | kW                       | 45              | 38              |
| Peak Regen Pulse Power–10 seconds                     | kW                       | 30              | 25              |
| Available Energy @ 10 kW for<br>Charge Depleting Mode | kWh                      | 3.4             | 11.6            |
| Maximum System Weight                                 | kg                       | 60              | 120             |
| Maximum System Volume                                 | liter                    | 40              | 80              |
| System Recharge Rate at 30°C, 120V                    | kW                       | 1.4             | 1.4             |
| Life                                                  | Deep Cycles <sup>a</sup> | 3,000           | -5,000          |
| Life                                                  | Years                    | 10              | -15             |

(a) 70–80% depth-of-discharge

Vehicle-related battery research in the DOE is managed by the Electrochemical Energy Storage effort within the DOE's Vehicle Technologies Program (VT). This comprehensive R&D effort is composed of three major activities: Battery Technology Development, conducted in cooperation with the USABC, that sponsors cost-shared efforts with battery makers to develop and evaluate advanced lithium battery technologies for advanced vehicles; Applied Battery Research, in which six of DOE's national laboratories bring their own expertise to resolve the critical barrier areas of battery life, abuse tolerance, low temperature performance, and cost; and, Long-term Battery Research, conducted at national laboratories, universities, and battery materials developers, provides a better understanding of why systems fail, develops models that predict system failure and permit system optimization, and investigates new and promising materials.

The major goal of the materials-related research is to develop cell materials with increased energy density. Such new materials would result in batteries with fewer cells, less active and supportive materials, less cell and battery hardware, lower weight, lower volume, and, of course, reduced cost. **Figure 1** shows the progression from today's Li-ion chemistries to those that are being developed in the Energy Storage Program for future generations of PHEVs. These activities are described in the following sections.

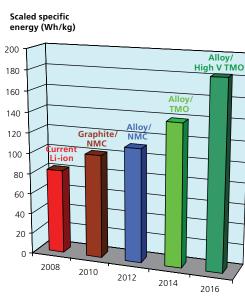



Figure 1. Energy gains from materials research

## **Materials Research**

#### Background

Lithium metal is an attractive material for batteries due to its lightweight, high voltage, high electrochemical capacity per unit weight, and good conductivity (**Aldrich Prod. Nos. 220914, 62360, 62361**). Development of high-energy primary (non-rechargeable) batteries using lithium anodes started in the 1960's and these batteries were first used in the 1970's for military applications. Today these batteries are used in a variety of applications, including calculators, watches, cameras, memory backup circuits, etc.

Development of rechargeable batteries with lithium metal anodes started in the early 1980's. A number of rechargeable battery chemistries were developed, but due to persistent life and safety problems none achieved commercial success. These problems arise from lithium's reactivity with the electrolyte and its tendency to form mossy and sometimes dendritic deposits when recharged. These deposits lead to cell failures when the dendrites penetrate the separator and cause internal short circuits.

These problems were circumvented with the introduction of lithium-ion batteries (sometimes abbreviated Li-ion) in the early 1990's. These batteries contain no metallic lithium but instead rely on the transfer of lithium ions between the anode (negative electrode) and cathode (positive electrode), as illustrated in Figure 2. When the cell is charged, lithium ions are inserted or intercalated into the interstitial space between the atomic layers of the anode and during discharge the lithium is extracted from the anode and inserted into the cathode.<sup>2</sup> The lithium ions are transported between the electrodes in an electrolyte comprised of a lithium salt dissolved in an aprotic organic solvent. A typical electrolyte, widely used in the DOE programs, consists of LiPF<sub>6</sub> (Aldrich Prod. No. 450227) dissolved in a mixture of ethylene carbonate (EC, Aldrich Prod. No. 676802) and ethyl methyl carbonate (EMC). A separator layer, usually a microporous polyolefin film, such as Celgard<sup>®</sup> 2500, a 25 µm polypropylene membrane, is placed between the electrodes to prevent electrical shorts while allowing flow of ionic current.

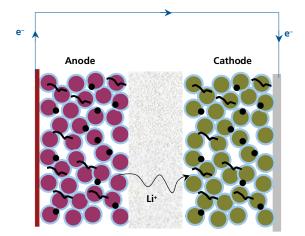



Figure 2. Schematic showing operation of Li ion cell

#### Anodes

The most popular material used as a host for lithium in the anode is graphitic carbon, usually supported on a copper substrate current collector. Other carbons, including both soft and hard carbons, have been used but graphitic carbons offer the best balance of reversible capacity and cycle life. When fully charged, all carbon materials approach to within 50 mV of the reversible lithium potential.

As an alternative to graphite, the DOE is investigating lithium alloys, including Li-Si, Li-Sn, and Li-Sb systems, and intermetallic electrodes, such as CuSn, Cu<sub>6</sub>Sn<sub>6</sub>, and CoCu<sub>5</sub>Sn<sub>5</sub>. These materials can provide an electrochemical potential only a few hundred mV above that of metallic lithium and a capacity of at least 400 mAh/g (>1500 mAh/ml).<sup>3</sup> Alloys of lithium with metals and/or intermetallic compounds, however, experience severe volume expansion/contraction during the charging (alloying), and discharging (de-alloying processes). When used in electrodes in Li-ion cells, these large volume changes lead to mechanical pulverization, loss of electronic contact between particles, and poor cycling. Approaches to alleviating this problem include using nanosized particles and/or including the alloying metal particles in a matrix phase to buffer the volume changes. These approaches are showing some improvements in experimental cells.

Metal oxides, such as lithium titanate (Aldrich Prod. No. 400939), that were previously investigated as positive electrode materials, have recently attracted attention as negative electrodes. The DOE program has studied the electrochemical and thermal properties of the Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> spinel<sup>4</sup> and is now focused on LiTiO<sub>2</sub>. These materials generally have high reversible capacity (up to 600 mAh/g) and high lithium diffusion rates, though their potential against lithium is in the order of 1.0-1.5V. This results in a reduction of cell voltage and energy compared to cells using a carbonaceous anode with the same cathode and electrolyte. Moreover, these materials are extremely stable and can lead to battery systems that are inherently reliable and safe compared to other Li-lon battery technologies. A new stable, nano-phase form of lithium titanate was developed that can provide an increase in the energy density of the cell and allow for easier industrial processing.



#### Cathodes

The majority of Li-ion batteries on the market today utilize lithium cobalt oxide ( $LiCoO_2$ , **Aldrich Prod. No. 442704**) as the positive electrode material.  $LiCoO_2$  offers good electrical performance, is easily prepared, and is relatively insensitive to process variations and moisture. It may not, however, have the balance of properties needed to meet the stringent life, abuse tolerance, and cost targets of vehicle applications. As a consequence, DOE is evaluating several candidate lithiated metal oxide cathode materials that offer improvements over  $LiCoO_2$ .

Manganese oxides are inexpensive, environmentally benign, have excellent safety characteristics, and inherently high rate capability making them ideal candidates for advanced cathodes. Work is underway to improve the performance of Mn-based electrodes by developing a firm scientific understanding of the factors that control or influence electrochemical performance and utilize this to design and develop improved compositions. One approach being taken is cationic and anionic substitutions, e.g., substituting Li, Ni and/or Co for Mn and F for O. For example, a substituted spinel, LiMn<sub>1.8</sub>Li<sub>0.1</sub>Ni<sub>0.1</sub>O<sub>3.8</sub>F<sub>0.2</sub>, exhibited improved electrochemical performance compared to a conventional  $LiMn_2O_4$  cathode (Aldrich Prod. No. 482277). Another approach is the development of high-voltage, high-capacity electrodes with two-component integrated structures, e.g., 'layered-layered' xLi<sub>2</sub>M'O<sub>3</sub>•(1-x)LiMO<sub>2</sub> and 'layered-spinel' xLi<sub>2</sub>M'O<sub>3</sub>•(1-x)LiM<sub>2</sub>O<sub>4</sub> electrodes in which M' is predominantly Mn and M is selected mainly from Mn, Ni and Co. In these composite structures, one layer is electrochemically active while the other is an electrochemically inactive, stabilizing component.

DOE is also investigating ways to improve the performance of LiFePO<sub>4</sub> cathodes. This effort is focused on developing composite cathodes with electrochemically-active polymers. The purpose is to replace electrochemically inactive cathode components, such as binders and conductive carbons, with electroactive materials that will contribute to the cell's energy storage capacity. The investigations include fabricating and evaluating carbon-coated LiFePO<sub>4</sub>/polymer composite cathodes with polypyrrole (PPy, polymerized from a pyrrole monomer with sodium p-toluenesulfonate dopant and  $(NH_4)_2S_2O_8$ (Aldrich Prod. No. 215589) as oxidizer in deionized water), polyaniline (PAn, synthesized from aniline with  $(NH_4)_2S_2O_8$  as oxidizer in water), and polytriphenylamine (PTPA, obtained by polymerization of triphenylamine monomer with FeCl<sub>3</sub> (Aldrich Prod. No. 236489) as oxidizer in CHCl<sub>3</sub> solution). Different methods are being used to make these composite cathodes, including direct mixing of LiFePO<sub>4</sub> with the polymer and simultaneous chemical polymerization of PPy or PAn with LiFePO<sub>4</sub> in the precursor solution.

#### *Electrolytes and the Solid Electrolyte Interphase (SEI)*

Most practical electrolyte solvents are not thermodynamically stable at the low voltage of the negative electrode and a layer of decomposition products form spontaneously on the carbonaceous anode electrode surface during the first charge. This *solid electrolyte interphase (SEI)* layer protects the electrolyte from further decomposition while being ionically conductive and allowing passage of Li<sup>+</sup> ions and is the key to stable battery performance. The dominant species in the SEI layer have been identified as lithium alkyl carbonates (ROCO<sub>2</sub>Li) and lithium alkoxides (ROLi), and include Li oxalate, Li ethylene carbonate, and Li ethylene dicarbonate. Additional studies into the characteristics of the SEI layer and how they are impacted by cell fabrication and formation conditions are underway. Research is also underway to understand the fundamental characteristics of Li<sup>+</sup> transport to enable higher rate, more stable electrodes and electrolytes to be developed. First principles quantum chemistry calculations are being used to develop atomic force fields, which are then used in molecular dynamics simulations to investigate charge transport, bulk, and interfacial resistance. Among other findings, it has been discovered that the predicted charge transfer resistance increased over one order of magnitude when the temperature was decreased from room temperature to below 0°C, as observed experimentally, and that the main contribution to this increased resistance is the mean free energy associated with Li<sup>+</sup> desolvation.

Research is also continuing to find an electrolyte that will permit the use of lithium metal as an anode since it offers the highest theoretical energy density of any known form of lithium. One approach being investigated is the development of a composite polymer electrolyte (with a hard non-conducting part that inhibits dendrites and second highly conducting portion) that mitigates the threat of dendritic growths that can short the cell. This concept, illustrated in **Figure 3**, holds the promise of enabling lithium rechargeable cells with two to three times the energy density of current lithium ion cells.

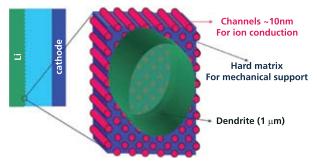



Figure 3. Schematic of composite electrolyte

## Summary

The materials research and development activities described above are part of a comprehensive DOE effort to develop the advanced batteries needed to commercialize plug-in hybrid electric vehicles. The objective of this research is to give battery developers a range of materials for anodes, cathodes, and electrolytes that they might choose to incorporate in the cells and batteries that they are developing. The current battery development efforts, sponsored by DOE in partnership with the USABC, consist of four contracts to address critical issues of PHEV battery cost and life and incorporate many of the materials and technologies described above. This wide range of technologies is being explored in order to reduce the uncertainty of whether cost-competitive batteries with adequate performance and life can be commercialized by 2016.

#### References:

(1) Ahmad A. Pesaran, et al, "Battery Requirements for Plug-In Hybrid Electric Vehicles -Analysis and Rationale," Electric Vehicle Symposium 23, Anaheim CA., December 25, 2007.
(2) Linden, David and Thomas B. Reddy, Handbook of Batteries, Third Edition, McGraw Hill, New York, 2002. (3) FY2007 Annual Progress Report for the DOE Energy Storage Research and Development Program, January 2008, available at http://www1.eere.energy.gov/ vehiclesandfuels/resources/fcvt\_reports.html. (4) FY2005 Annual Progress Report for the DOE Energy Storage Research and Development Program, January 2006, available at http://www1.eere.energy.gov/vehiclesandfuels/resources/fcvt\_reports.html

## Select Materials for Battery Applications

For a complete list of battery related materials please visit sigma-aldrich.com/energy.

#### **Electrode Materials**

| Description O.D. × I.D. × L 80-200 nm × 0.5-10 nm × 0.5-20 μm      | Cat. No.<br>332461-2.5KG<br>332461-12KG<br>636398-2G<br>636398-10G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    | 332461-12KG<br>636398-2G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00.0000/ 1.150                                                     | 636398-50G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 99.999%, L 150 mm<br>diam. 6 mm                                    | 496553-180.7G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 99.999% trace metals basis, L 150 mm<br>diam. 3 mm                 | 496537-43.5G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 99.99+% trace metals basis                                         | 496588-113.4G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 99.99+%                                                            | 496596-113.4G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 99%, W × L 50-250 nm × 0.5-5 μm                                    | 698830-1G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ≥99%                                                               | 62360-10G-F<br>62360-50G-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 99%, diam. 3 mm                                                    | 62358-50G-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 99.9+%, metals basis                                               | 499811-25G<br>499811-100G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 99.9% trace metals basis, diam. 5.7 cm                             | 265977-115G<br>265977-460G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 99.9% trace metals basis, thickness $\times$ W 1.5 $\times$ 100 mm | 266000-25G<br>266000-100G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 99.9% trace metals basis, thickness $\times$ W 0.75 $\times$ 45 mm | 265993-25G<br>265993-100G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 99.9% trace metals basis, thickness $\times$ W 0.75 $\times$ 19 mm | 320080-25G<br>320080-100G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 99.9% trace metals basis, thickness $\times$ W 0.38 $\times$ 23 mm | 265985-25G<br>265985-100G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 99.9% trace metals basis, diam. 12.7 mm                            | 265969-50G<br>265969-250G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 99.9% trace metals basis, diam. 3.2 mm                             | 220914-25G<br>220914-100G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 99.8% trace metals basis                                           | 442704-25G-A<br>442704-100G-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 95%                                                                | 442712-100G-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                                                                  | 482277-25G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 99.9% trace metals basis                                           | 400904-50G<br>400904-250G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                                                                  | 400939-100G<br>400939-500G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 97%                                                                | 377473-100G<br>377473-500G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 99.99+% trace metals basis                                         | 431761-1G<br>431761-10G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 99%                                                                | 377201-500G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 99.99+%                                                            | 529664-5G<br>529664-25G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 99.99% trace metals basis                                          | 203750-5G<br>203750-25G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ≥99%                                                               | 243442-5G<br>243442-100G<br>243442-500G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                    | diam. 6 mm         99.999% trace metals basis, L 150 mm         99.99+% trace metals basis         99.99+%         99%, W × L 50-250 nm × 0.5-5 μm         ≥99%         99%, diam. 3 mm         99.9, w, metals basis         99.9, trace metals basis, diam. 5.7 cm         99.9% trace metals basis, thickness × W 1.5 × 100 mm         99.9% trace metals basis, thickness × W 0.75 × 45 mm         99.9% trace metals basis, thickness × W 0.75 × 19 mm         99.9% trace metals basis, thickness × W 0.38 × 23 mm         99.9% trace metals basis, diam. 3.2 mm         99.9% trace metals basis         99.99+% trace metals basis         99.99+% trace metals basis         99.99+% |



#### **Electrolyte Materials**

| Name                          | Formula            | Form                          | Purity                                    | Cat. No.                                |
|-------------------------------|--------------------|-------------------------------|-------------------------------------------|-----------------------------------------|
| Lithium hexafluoroarsenate(V) | LiAsF <sub>6</sub> | -                             | 98%                                       | 308315-10G                              |
| Lithium hexafluorophosphate   | LiPF <sub>6</sub>  | powder                        | ≥99.99% trace metals basis, battery grade | 450227-5G<br>450227-25G                 |
|                               | LiPF <sub>6</sub>  | powder                        | 98%                                       | 201146-5G<br>201146-25G<br>201146-100G  |
| Lithium perchlorate           | LiCIO <sub>4</sub> | granular                      | 99.99% trace metals basis                 | 431567-50G<br>431567-250G               |
|                               | LiCIO <sub>4</sub> | powder and chunks             | 99.99% trace metals basis                 | 634565-10G<br>634565-100G               |
|                               | LiClO <sub>4</sub> | granular                      | ≥95.0%, ACS reagent                       | 205281-5G<br>205281-100G<br>205281-500G |
| Lithium tetrachloroaluminate  | -                  | beads                         | 99.99% trace metals basis,<br>anhydrous   | 451142-5G                               |
| Lithium tetrafluoroborate     | LiBF <sub>4</sub>  | powder                        | 99.998% trace metals basis, anhydrous     | 451622-5G<br>451622-25G                 |
|                               | LiBF <sub>4</sub>  | powder                        | 98%                                       | 244767-10G<br>244767-50G                |
|                               | LiBF <sub>4</sub>  | liquid, 1.0 M in acetonitrile | -                                         | 255815-100ML                            |

# New Aldrich Handbook!

## Over 6,000 innovative new products

#### Reserve your copy of the NEW 2009-2010 Aldrich set today.

#### 2009-2010 Aldrich Handbook

- 10,000 chemical structures
- 8,500 updated literature citations
- Extensive chemical & physical data

#### Labware Catalog

- Innovative new products
- Improved product images
- New technical information index

Accelerating Customers' Success through Leadership in Life Science, High Technology and Service

sigma-aldrich.com



To request your complimentary Aldrich Handbook set, visit sigma-aldrich.com/aldrichcat

SIGMA-ALDRICH®

#### **Solvents**

| Name                  | Structure                        | Description                                                               | Cat. No.                                                            |
|-----------------------|----------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|
| γ-Butyrolactone       | $\square$                        | ≥99%, GC                                                                  | H7629-500G                                                          |
|                       |                                  |                                                                           | H7629-1KG                                                           |
|                       |                                  | ≥99%                                                                      | B103608-25G<br>B103608-500G<br>B103608-3KG<br>B103608-20KG          |
| 1,2-Dimethoxyethane   | H <sub>3</sub> CO <sub>CH3</sub> | 99.9%                                                                     | 307432-100ML<br>307432-1L<br>307432-2L                              |
|                       |                                  | ≥99%                                                                      | 256382-1L<br>256382-2L                                              |
|                       |                                  | ≥99.5%, GC                                                                | 38569-500ML-F<br>38569-1L-F                                         |
| 1,3-Dioxolane         | ٥ي٥                              | 99.8%                                                                     | 271020-100ML<br>271020-1L<br>271020-2L                              |
|                       |                                  | 99%                                                                       | 184497-500ML<br>184497-1L<br>184497-4L                              |
| Poly(2-vinylpyridine) |                                  | M <sub>n</sub> ~6100<br>M <sub>p</sub> ~6400<br>M <sub>w</sub> ~6500      | 81624-100MG                                                         |
|                       |                                  | M <sub>n</sub> ~19900<br>M <sub>p</sub> ~20900<br>M <sub>w</sub> ~20500   | 81628-100MG                                                         |
|                       |                                  | M <sub>n</sub> ~75500<br>M <sub>p</sub> ~79500<br>M <sub>w</sub> ~79100   | 81635-100MG                                                         |
|                       |                                  | average $M_n$ 4,800 (Typical)<br>average $M_w$ 5,000 (Typical)            | 523291-1G                                                           |
|                       |                                  | average $M_n$ 9,500 (Typical)<br>average $M_w$ 11,000 (Typical)           | 523305-1G                                                           |
|                       |                                  | average $M_{\rm n}$ 35,000 (Typical) average $M_{\rm w}$ 37,500 (Typical) | 523321-1G                                                           |
|                       |                                  | average $M_n$ 78,500 (Typical)<br>average $M_w$ 121,500 (Typical)         | 523348-1G                                                           |
|                       |                                  | average $M_n$ 152,000 (Typical) average $M_w$ 159,000 (Typical)           | 523356-1G                                                           |
| Propylene carbonate   | o ↓<br>o ↓<br>o                  | 99.7%                                                                     | 310328-100ML<br>310328-500ML<br>310328-1L<br>310328-1L<br>310328-2L |
|                       |                                  | 99.7%                                                                     | 414220-1L<br>414220-2L                                              |
| Thionyl chloride      | or <sub>28</sub> .cl             | 99.5%                                                                     | 447285-5ML<br>447285-100ML<br>447285-500ML                          |
|                       |                                  | ≥99%                                                                      | 230464-5ML<br>230464-100ML<br>230464-1L                             |
|                       |                                  | ≥99%                                                                      | 320544-1L<br>320544-2.5L                                            |
|                       |                                  |                                                                           |                                                                     |

For questions, product data, or new product suggestions, please contact Aldrich Materials Science at *matsci@sial.com*.



#### Argentina

SIGMA-ALDRICH DE ARGENTINA S.A. Free Tel: 0810 888 7446 Tel: (+54) 11 4556 1472 Fax: (+54) 11 4552 1698

#### Australia

SIGMA-ALDRICH PTY LTD. Free Tel: 1800 800 097 Free Fax: 1800 800 096 Tel: (+61) 2 9841 0555 Fax: (+61) 2 9841 0500

#### Austria

SIGMA-ALDRICH HANDELS GmbH Tel: (+43) 1 605 81 10 Fax: (+43) 1 605 81 20

#### Belgium

SIGMA-ALDRICH NV/S.A. Free Tel: 0800 14747 Free Fax: 0800 14745 Tel: (+32) 3 899 13 01 Fax: (+32) 3 899 13 11

#### Brazil

SIGMA-ALDRICH BRASIL LTDA. Free Tel: 0800 701 7425 Tel: (+55) 11 3732 3100 Fax: (+55) 11 5522 9895

#### Canada

SIGMA-ALDRICH CANADA LTD. Free Tel: 1800 565 1400 Free Fax: 1800 265 3858 Tel: (+1) 905 829 9500 Fax: (+1) 905 829 9292

#### China

SIGMA-ALDRICH (SHANGHAI) TRADING CO. LTD. Free Tel: 800 819 3336 Tel: (+86) 21 6141 5566 Fax: (+86) 21 6141 5567

#### **Czech Republic**

SIGMA-ALDRICH spol. s r. o. Tel: (+420) 246 003 200 Fax: (+420) 246 003 291

#### World Headquarters

3050 Spruce St., St. Louis, MO 63103 (314) 771-5765 *sigma-aldrich.com* 

#### Denmark

SIGMA-ALDRICH DENMARK A/S Tel: (+45) 43 56 59 10 Fax: (+45) 43 56 59 05

#### Finland

SIGMA-ALDRICH FINLAND OY Tel: (+358) 9 350 9250 Fax: (+358) 9 350 92555

#### France

SIGMA-ALDRICH CHIMIE S.à.r.l. Free Tel: 0800 211 408 Free Fax: 0800 031 052 Tel: (+33) 474 82 28 00 Fax: (+33) 474 95 68 08

#### Germany

SIGMA-ALDRICH CHEMIE GmbH Free Tel: 0800 51 55 000 Free Fax: 0800 64 90 000 Tel: (+49) 89 6513 0 Fax: (+49) 89 6513 1160

#### Greece

SIGMA-ALDRICH (O.M.) LTD. Tel: (+30) 210 994 8010 Fax: (+30) 210 994 3831

#### Hungary

SIGMA-ALDRICH Kft Ingyenes telefonszám: 06 80 355 355 Ingyenes fax szám: 06 80 344 344 Tel: (+36) 1 235 9055 Fax: (+36) 1 235 9050

#### India

SIGMA-ALDRICH CHEMICALS PRIVATE LIMITED Telephone Bangalore: (+91) 80 6621 9600 New Delhi: (+91) 11 4358 8000 Mumbai: (+91) 22 2570 2364 Hyderabad: (+91) 40 4015 5488 Fax

Bangalore: (+91) 80 6621 9650 New Delhi: (+91) 11 4358 8001 Mumbai: (+91) 22 2579 7589 Hyderabad: (+91) 40 4015 5466

#### Ireland

SIGMA-ALDRICH IRELAND LTD. Free Tel: 1800 200 888 Free Fax: 1800 600 222 Tel: +353 (0) 402 20370 Fax: + 353 (0) 402 20375

Israel SIGMA-ALDRICH ISRAEL LTD. Free Tel: 1 800 70 2222 Tel: (+972) 8 948 4100 Fax: (+972) 8 948 4200

#### Italy SIGMA-ALDRICH S.r.I. Numero Verde: 800 827018

Tel: (+39) 02 3341 7310 Fax: (+39) 02 3801 0737 Japan

SIGMA-ALDRICH JAPAN K.K. Tel: (+81) 3 5796 7300 Fax: (+81) 3 5796 7315

#### Korea

SIGMA-ALDRICH KOREA Free Tel: (+82) 80 023 7111 Free Fax: (+82) 80 023 8111 Tel: (+82) 31 329 9000 Fax: (+82) 31 329 9090

#### Malaysia

SIGMA-ALDRICH (M) SDN. BHD Tel: (+60) 3 5635 3321 Fax: (+60) 3 5635 4116

#### Mexico

Order/Customer Service (800) 325-3010 • Fax (800) 325-5052

Technical Service (800) 325-5832 • sigma-aldrich.com/techservice

Development/Bulk Manufacturing Inquiries SAFC<sup>®</sup> (800) 244-1173

SIGMA-ALDRICH QUÍMICA, S.A. de C.V. Free Tel: 01 800 007 5300 Free Fax: 01 800 712 9920 Tel: 52 722 276 1600 Fax: 52 722 276 1601

The Netherlands SIGMA-ALDRICH CHEMIE BV Free Tel: 0800 022 9088 Free Fax: 0800 022 9089 Tel: (+31) 78 620 5411 Fax: (+31) 78 620 5421

#### New Zealand

SIGMA-ALDRICH NEW ZEALAND LTD. Free Tel: 0800 936 666 Free Fax: 0800 937 777 Tel: (+61) 2 9841 0555 Fax: (+61) 2 9841 0500

Norway SIGMA-ALDRICH NORWAY AS Tel: (+47) 23 17 60 60 Fax: (+47) 23 17 60 50

#### Poland

SIGMA-ALDRICH Sp. z o.o. Tel: (+48) 61 829 01 00 Fax: (+48) 61 829 01 20

#### Portugal

SIGMA-ALDRICH QUÍMICA, S.A. Free Tel: 800 202 180 Free Fax: 800 202 178 Tel: (+351) 21 924 2555 Fax: (+351) 21 924 2610

#### Russia

SIGMA-ALDRICH RUS, LLC Tel: +7 (495) 621 6037 +7 (495) 621 5828 Fax: +7 (495) 621 5923

#### Singapore

SIGMA-ALDRICH PTE. LTD. Tel: (+65) 6779 1200 Fax: (+65) 6779 1822

#### Slovakia

SIGMA-ALDRICH spol. s r. o. Tel: (+421) 255 571 562 Fax: (+421) 255 571 564

South Africa

SIGMA-ALDRICH SOUTH AFRICA (PTY) LTD. Free Tel: 0800 1100 75 Free Fax: 0800 1100 79 Tel: (+27) 11 979 1188 Fax: (+27) 11 979 1119

#### Spain

SIGMA-ALDRICH QUÍMICA, S.A. Free Tel: 900 101 376 Free Fax: 900 102 028 Tel: (+34) 91 661 99 77 Fax: (+34) 91 661 96 42

Sweden SIGMA-ALDRICH SWEDEN AB Tel: (+46) 8 742 4200 Fax: (+46) 8 742 4243

#### Switzerland

SIGMA-ALDRICH CHEMIE GmbH Free Tel: 0800 80 00 80 Free Fax: 0800 80 00 81 Tel: (+41) 81 755 2828 Fax: (+41) 81 755 2815

#### United Kingdom

SIGMA-ALDRICH COMPANY LTD. Free Tel: 0800 717 181 Free Fax: 0800 378 785 Tel: (+44) 1747 833 000 Fax: (+44) 1747 833 313 SAFC (UK) Tel: 01202 712305

#### United States

SIGMA-ALDRICH P.O. Box 14508 St. Louis, Missouri 63178 Toll-Free: 800 325 3010 Toll-Free Fax: 800 325 5052 Call Collect: (+1) 314 771 5750 Tel: (+1) 314 771 5765 Fax: (+1) 314 771 5757

Internet sigma-aldrich.com





Accelerating Customers' Success through Innovation and Leadership in Life Science, High Technology and Service

70798-503403

©2008 Sigma-Aldrich Co. All rights reserved. SIGMA, S, SAFC; SAFC; SIGMA-ALDRICH, ALDRICH, Q, FLUKA, Q, and SUPELCO, Q are trademarks belonging to Sigma-Aldrich Co. and its affiliate Sigma-Aldrich Biotechnology, LP. Sigma brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip. Nafion is a registered trademark of E.I. du Pont de Nemours & Co., Inc. ESCAT is a trademark of Engelhard Corp. Eppendorf is a registered trademark of Eppendorf-Netheler-Hinz GmbH. Sepharose is a registered trademark of EH ealthcare. Coomassie is a registered trademark of Pipelhard Corp. Eppendorf is a trademark of Pipendorf-Netheler-Hinz GmbH. Sepharose is a registered trademarks of Sigma-Aldrich Biotechnology LP and Sigma-Aldrich and Surgers. Ltd. Plexcore is a registered trademark of Pipendorf-Netheler-Hinz GmbH. Sepharose is a registered trademarks of Sigma-Aldrich Biotechnology LP and Sigma-Aldrich Co. Cellgard is a registered trademark of Sigma-Aldrich Biotechnology LP and Sigma-Aldrich Co. Cellgard is a registered trademark of Celgard LLC.

SIGMA-ALDRICH