

3050 Spruce Street Saint Louis, Missouri 63103 USA Telephone 800-325-5832 • (314) 771-5765 Fax (314) 286-7828 email: techserv@sial.com sigma-aldrich.com

ProductInformation

Lectin from Peanut (*Arachis hypogaea*)

Product Number L 0881 Storage Temperature 0 °C

Product Description

MW: The molecular weight of 25.2 kDa for the monomer is based on the amino acid sequence.¹ Therefore, the native tetramer would be calculated as 100.8 kDa.

 λ_{max} : 280 nm (in phosphate buffered saline, pH 6.8). pl: Peanut lectin has 6-8 separate isolectins that focus between pH 5 and 7.

Lectins are proteins or glycoproteins of non-immune origin that agglutinate cells and/or precipitate complex carbohydrates. Lectins are capable of binding glycoproteins even in presence of various detergents.³ The agglutination activity of these highly specific carbohydrate-binding molecules is usually inhibited by a simple monosaccharide, but for some lectins, di, tri, and even polysaccharides are required.

Lectins are isolated from a wide variety of natural sources, including seeds, plant roots and bark, fungi, bacteria, seaweed and sponges, mollusks, fish eggs, body fluids of invertebrates and lower vertebrates, and from mammalian cell membranes. The precise physiological role of lectins in nature is still unknown, but they have proved to be very valuable in a wide variety of applications *in vitro*, including:

- 1. blood grouping and erythrocyte polyagglutination studies.
- 2. mitogenic stimulation of lymphocytes.
- 3. lymphocyte subpopulation studies.
- 4. fractionation of cells and other particles.
- 5. histochemical studies of normal and pathological conditions.

Sigma offers a range of lectins suitable for the above applications. Most Sigma lectins are highly purified by affinity chromatography, but some are offered as purified or partially purified lectins, suitable for specific applications.

Many of the lectins are available conjugated to (conjugation does not alter the specificity of the lectin):

- 1. fluorochromes (for detection by fluorimetry).
- 2. enzymes (for enzyme-linked assays).
- 3. insoluble matrices (for use as affinity media).

Please refer to the table for general information on the most common lectins.

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

This lectin is soluble in phosphate buffered saline, pH 7.2 (1 mg/ml).

Storage/Stability

Aggregation is thought to occur in the presence of high concentrations of 2-mercaptoethanol.

.ectin	MW (kDa)	Subunits	Specificity Blood Group Sugar		Mitogenic Activity
Abrus precatorius			_	- agai	+
, Agglutinin	134	4		gal	
Abrin A (toxin)	60	2		gal	
Abrin B (toxin)	63.8	2(αβ)		gal	
Agarius bisporus	58.5	_	_	β-gal(1→3)galNAc	
Anguilla anguilla	40	2	Н	α-L-Fuc	
Arachis hypogaea	120	4	Т	β-gal(1→3)galNAc	
Artocarpus integrifolia Bandeiraea simplicifolia	42	4	Т	α-gal→OMe	+
BS-I	114	4	А, В	α-gal, α-galNAc	
BS-I-A ₄	114	4	А	α-galNAc	
BS-I-B ₄	114	4	В	α-gal	
BS-II	113	4	acq, B, Tk, T	glcNAc	
Bauhinia purpurea	195	4	_	β-gal(1→3)galNAc	+
Caragana arborescens	60; 120 ^a	2/4	_	galNAc	
Cicer arietinum	44	2	_	fetuin	
Codium fragile	60	4	_	galNAc	
Concanavalin A	102	4	_	α-man, α-glc	+
Succinyl-Concanavalin A	51	2	_	α-man, α-glc	+ ^b
Cytisus scoparius	_	_	_	galNAc, gal	
Datura stramonium	86	2(αβ)	_	(glcNAc) ₂	
Dolichos biflorus	140	4	A ₁	α-galNAc	
Trythrina corallodendron	60	2	_	β-gal(1→4)glcNAc	+
Erythrina cristagalli	56.8	2(αβ)	_	β -gal(1 \rightarrow 4)glcNAc	
Euonymus europaeus	166	4(αβ)	В, Н	α-gal(1→3)gal	+
Galanthus nivalis	52	4	(h)	non-reduc. α-man	-
Glycine max	110	4	()	galNAc	+ ^c
lelix aspersa	79	_	А	galNAc	•
lelix pomatia	79	6	A	galNAc	
.athyrus odoratus	40-43	4(αβ)	_	α-man	+
ens culinaris	49	2	_	α-man	+
imulus polyphemus	400	- 18	_	NeuNAc	
Bacterial agglutinin	-	_	_	galNAc, glcNAc	
ycopersicon esculentum	71	_	_	(glcNAc) ₃	
laackia amurensis	130	2(αβ)	0	sialic acid	т
laclura pomifera	40-43	2(αβ) 2(αβ)	-	α -gal, α -galNAc	т
Iomordica charantia	115-129	4(αβ)	_	gal, galNAc	
laja mocambique mocambique		4(up)	-	yai, yainAc	
	; —	-	-	-	
Naja naja kaouthia	_ 26	-	_ (b)	- « D mon	
Varcissus pseudonarcissus	20	2	(h)	α-D-man	
Perseau americana	-	_	_	-	
Phaseolus coccineus	112	4	_		
Phaseolus limensis	247(II) 124(III)	8 4	A	galNAc	+
Phaseolus vulgaris	100			- Para and the State	
PHA-E	128	4	_	oligosaccharide	+
PHA-L PHA-P PHA-M	128	4	_	oligosaccharide	+

н <i>с</i> .	Specificity		Mitogenic		
Lectin	MW (kDa)	Subunits	Blood Group	Sugar	Activity
Phytolacca americana	32	-	—	(glcNAc) ₃	+
Pisum sativum	49	4(αβ)	_	α-man	+
Pseudomonas aeruginosa PA-I	13-13.7	-	-	gal	+ ^c
Psophocarpus tetragonolobus	35	1	-	galNAc, gal	
Ptilota plumosa	65; 170	-	В	α-gal	
Ricinus communis					
Toxin, RCA ₆₀	60	2	-	galNAc, β-gal	
Toxin, RCA ₁₂₀	120	4	_	β-gal	
Sambucus nigra	140	4(αβ)	-	αNeuNAC(2→6)gal	+ ^c
				galNAc	
Solanum tuberosum	50; 100 ^a	1, 2	-	(glcNAc) ₃	
Sophora japonica	133	4	А, В	β-galNAc	
Tetragonolobus purpureas	120(A)	4	Н	α-L-fuc	
	58(BA)	2	Н	α-L-fuc	
	117(C)	4	Н	α-L-fuc	
Triticum vulgaris	36	2	_	(glcNAc) ₂ , NeuNAc	+
Ulex europaeus					
UEA I	68	-	Н	α-L-fuc	
UEA II	68	_	_	(glcNAc) ₂	
Vicia faba	50	4(αβ)	_	man, glc	+
Vicia sativa	40	4(αβ)	_	glc, man	+
Vicia villosa	139	4	$A_{1+}T_n$	galNAc	
A ₄	134	4	A ₁	galNAc	
B_4	143	4	T _n	galNAc	
Vigna radiata	160	4	-	α-gal	
Viscum album	115	4(αβ)	-	β-gal	
Wisteria floribunda	68	2	_	galNAc	

^a Concentration-dependent molecular weight

^b Non-agglutinating and mitogenic

^c Mitogenic for neuraminidase-treated lymphocytes

References

- 1. Eur. J. Biochem., **196**, 631-637 (1991).
- 2. Goldstein, I. J., and Poretz, R. D., The Lectins, pp 163-167 (1986,).
- 3. Rueben, L., et al., Activities of lectins and their immobilized derivatives in detergent solutions.

Implications on the use of lectin affinity chromatography for the purification of membrane glycoproteins. Biochemistry, **16**, 1787-1794 (1977).

IRB/MWM/JRC/NSB/SAG 1/03

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.