

ProductInformation

(6R)-5,6,7,8-Tetrahydrobiopterin dihydrochloride

Product Number T4425 Storage Temperature -20 °C

CAS RN: 69056-38-8

Synonyms: BH4; 6R-BH4; Sapropterin; Dapropterin; 2-amino-6-(1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-

3H-pteridin-4-one

Product Description

Molecular formula: C₉H₁₅N₅O₃ · 2HCl

Formula weight: 314.17

 $[\alpha]_D = -6.6^{\circ}$ to -7.6° (C = 1 in 0.1 N HCl). $(216 \text{ nm}) = 15,400 (0.1 \text{ N HCI})^{1}$ E^{M} (264 nm) = 13.750 (0.1 N HCl)¹

Tetrahydrobiopterin is a natural cofactor for phenylalanine hydroxylase, 2 tyrosine hydroxylase, 3 tryptophan hydroxylase, ⁴ nitric oxide synthase, ⁵ and alkylglycerol monooxygenase. ⁶ Thus, it is necessary *in* vivo for the conversion of phenylalanine to tyrosine and for the production of the hormone epinephrine and of the monoamine neurotransmitters, serotonin, dopamine, and norepinephrine. ⁷ It is also involved in apoptosis and other cellular events mediated by nitric oxide production^{8,9,} and catalyzes the cleavage of alkylglycerol ethers.6

Tetrahydrobiopterin is synthesized *in vivo* from GTP by the sequential action of GTP cyclohydrase I, pyruvoyltetrahydrobiopterin synthase, and sepiapterin reductase.⁵

During enzymatic hydroxylations or production of nitric oxide in vivo, tetraydrobiopterin is oxidized to a quinonoid dihydrobiopterin intermediate that is rapidly recycled to tetrahydrobiopterin by dihydropteridine reductase and NADPH. 8,7

In the absence of dihydropteridine reductase in vivo or in aqueous buffer *in vitr*o, the quinonoid intermediate isomerizes to form 7,8-dihydrobiopterin. The latter can be reduced to tetrahydrobiopterin *in vivo* by the action of dihydrofolate reductase and NADPH.

Some forms of phenylketonuria are due to deficiencies in tetrahydrobiopterin production and can be potentially treated with tetrahydrobiopterin instead of a low phenylalanine diet.1

Tetrahydrobiopterin can be produced from 7,8-dihydrobiopterin in vitro by enzymatic reduction with dihydrofolate reductase and NADPH ' or by catalytic reduction with H_2 in the presence of PtO_2 . Review articles on tetrahydrobiopterin are available. 12,13

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation instructions

The product is soluble in oxygen-free water (20 mg/ml).

Storage and Stability

Tetrahydrobiopterin is very hygroscopic. The product should be stored desiccated and protected from light at –20 °C. Under these conditions the product is stable for 3 years.

Tetrahydrobiopterin reacts with oxygen, especially in neutral and alkaline solutions. Due to oxidation, tetrahydrobiopterin solutions become yellow, but are relatively stable at -20 °C. Solutions in 0.1 N HCl are stable for several weeks at -20 °C. Its half-life in 0.1 M phosphate buffer, pH 6.8, is ~16 minutes at room temperature and it is completely destroyed in 90 minutes.^{1,10} In neutral phosphate or HEPES buffer, the primary breakdown product is 7,8-dihydrobiopterin with some loss of the alkyl sidechain to form 7,8-dihydropterin. In neutral Tris, bicine, or bicarbonate buffer, 7,8-dihydropterin is the major breakdown product. 14,15

References

- Stone, K.J., The role of tetrahydrofolate dehydrogenase in the hepatic supply of tetrahydrobiopterin in rats. Biochem. J., 157, 105-109 (1976).
- 2. Kaufman, S. The structure of the phenylalanine-hydroxylation cofactor. Proc. Natl. Acad. Sci., USA, **50**, 1085-1093 (1963).
- Abou-Donia, M.M., and Viveros, O.H., Tetrahydrobiopterin increases in adrenal medulla and cortex: a factor in the regulation of tyrosine hydroxylase. Proc. Natl. Acad. Sci., USA, 78, 2703-6 (1981).
- Friedman, P.A., et al., Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. J. Biol. Chem., 247, 4165-4173 (1972).
- Werner, E.R., et al., Tetrahydrobiopterin biosynthetic activities in human macrophages, fibroblasts, THP-1, and T 24 cells. GTPcyclohydrolase I is stimulated by interferon-γ and 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase are constitutively present. J. Biol. Chem., 265, 3189-3192 (1990).
- Tietz, A., et al., A new pteridine-requiring enzyme system for the oxidation of glyceryl ethers. J. Biol. Chem., 239, 4081-4090 (1964).
- 7. Miwa, S., *et al.*, 6R-L-erythro-5,6,7,8-tetrahydrobiopterin as a regulator of dopamine and serotonin biosynthesis in the rat brain. Arch. Biochem. Biophys., **239**, 234-241 (1985).

- 8. Gross, S.S., et al., Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem. Biophys. Res. Commun., 178, 823-829 (1991).
- 9. Werner-Felmayer, G., *et al.*, Pteridine biosynthesis in human endothelial cells. Impact on nitric oxidemediated formation of cyclic GMP. J. Biol. Chem., **268**, 1842-1846 (1993).
- Kaufman, S., Metabolism of the phenylalanine hydroxylation cofactor. J. Biol. Chem., 242, 3934-3943 (1967).
- 11. Blau, N., and Erlandsen, H., The metabolic and molecular bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol. Genet. Metab., **82**, 101-11 (2004)
- 12. Nichol, C.A., *et al.*, Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Ann. Rev. Biochem., **54**, 729-764 (1985).
- 13. Werner, E.R., *et al.* Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects. Exp. Biol. Med. (Maywood), 228, 1291-302 (2003).
- 14. Davis, M.D., *et al.*, The auto-oxidation of tetrahydrobiopterin. Eur. J. Biochem., **173**, 345-51 (1988).
- 15. Armarego, D.L., *et al.*, Peroxidase catalyzed aerobic degradation of 5,6,7,8-tetrahydrobiopterin at physiological pH. Eur. J. Biochem., **135**, 393-403 (1983).

NDH,PHC,MAM 02/06-1