

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

Triethylammonium bicarbonate buffer

Catalog Number **T7408** Storage Temperature 2–8 °C

CAS Number 15715-58-9
Synonyms: TEAB, triethylammonium hydrogen carbonate buffer

Product Description

This product is a 1.0 M solution, pH 8.5.

Triethylammonium bicarbonate (TEAB) is a buffer, composed of a combination of triethylamine and carbon dioxide, the latter occuring in solution as bicarbonate. TEAB has been applied for use in electrophoresis and ion-exchange chromatography. The volatility of TEAB facilitates sample recovery after chromatographic analysis and makes TEAB a buffer of interest for mass spectrometric analysis of biomolecules.

TEAB has been utilized to coat Amberlite® XAD-4 resin for the separation of nucleic acid hydrolysis products.² Several reports have described the use of TEAB in HPLC resolution of nucleotides, such as the separation of 5′-adenosine di- and triphosphates from inorganic pyrophosphate or imidodiphosphate, and the resolution of groups of nucleoside diphosphates and nucleoside triphosphates.^{3,4} HPLC-ESI MS methods for the study of oligonucleotides using TEAB have been described.⁵⁻⁷ Proteins have also been analyzed by ESI-MS with TEAB buffer.⁸

The preparation of TEAB by passing carbon dioxide gas into a 1.0 M aqueous solution of triethylamine at 5 °C has been described.⁵

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

References

 Porath, J., Use of triethylammonium buffers in ionexchange chromatography and electrophoresis. Nature, 175, 478 (1955).

- Emematsu, K., and Suhadolnik, R.J., Separation of nucleic acid hydrolysis products, purines, pyrimidines, nucleosides, nucleotides, ribonucleic acid hydrolyzates, and mixtures from nucleotide syntheses by column chromatography on amberlite XAD-4. J. Chromatogr., 123(2), 347-374 (1976).
- Mahoney, C.W., and Yount, R.G., Purification of micromolar quantities of nucleotide analogs by reverse-phase high-performance liquid chromatography using a volatile buffer at neutral pH. Anal. Biochem., 138(1), 246-251 (1984).
- Ip, C.Y. et al., Separation of nucleosides and nucleotides by reversed-phase high-performance liquid chromatography with volatile buffers allowing sample recovery. Anal. Biochem., 147(1), 180-185 (1985).
- Huber, C.G., and Krajete, A., Sheath liquid effects in capillary high-performance liquid chromatography-electrospray mass spectrometry of oligonucleotides. J. Chromatogr. A, 870(1-2), 413-424 (2000).
- Huber, C.G., and Krajete, A., Comparison of direct infusion and on-line liquid chromatography/ electrospray ionization mass spectrometry for the analysis of nucleic acids. J. Mass. Spectrom., 35(7), 870-877 (2000).
- 7. Premstaller, A. et al., High-performance liquid chromatography-electrospray ionization mass spectrometry of single- and double-stranded nucleic acids using monolithic capillary columns. Anal. Chem., **72(18)**, 4386-4393 (2000).
- 8. Lemaire, D. et al., Stabilization of gas-phase noncovalent macromolecular complexes in electrospray mass spectrometry using aqueous triethylammonium bicarbonate buffer. Anal. Chem., 73(8), 1699-1706 (2001).

Amberlite is a registered trademark of The Dow Chemical Company or an affiliated company of Dow.

SN,MAM 07/16-1