

sigma-aldrich.com

3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

Product Information

Pepsin-Agarose, from porcine gastric mucosa Lyophilized powder

Catalog Number **P0609** Storage Temperature –20 °C

Product Description

Pepsin (EC 3.4.23.1) is a member of the Peptidase A1 family, and is the predominant digestive protease in the gastric juice of vertebrates. Pepsin has an approximate molecular mass of 34.6 kDa.¹

Pepsin, unlike some other endopeptidases, hydrolyzes only peptide bonds. Pepsin does not hydrolyze non-peptide amide or ester linkages. Pepsin exhibits preferential cleavage for hydrophobic, preferably aromatic, residues in P1 and P1' positions. Increased susceptibility to hydrolysis occurs if a sulfur-containing amino acid is close to a peptide bond which has an aromatic amino acid.

Pepsin will also preferentially cleave at the carboxyl side of Phe and Leu, and to a lesser extent at the carboxyl side of Glu residues. Pepsin will not cleave at Val, Ala, or Gly linkages.² Amidation of the C-terminal carboxyl group prevents hydrolysis by pepsin.^{2,3}

Pepsin is commonly used in the preparation of $F(ab')_2$ fragments from antibodies. Pepsin-agarose has been likewise used in $F(ab')_2$ fragment preparation.^{4,5}

This pepsin-agarose product is prepared by the immobilization of pepsin, originally isolated from porcine gastric mucosa, to activated 4% crosslinked beaded agarose. Several references have cited use of this specific product in various applications, including:

- Purification of stable isotope-labeled collagen⁶
- Analysis of distillers dried grains⁷
- Analysis of bakery meal dry matter⁸
- Digestion of prolamin proteins in coeliac disease biopsy samples⁹
- Simulating gastric digestion¹⁰
- Study of the peanut allergen Ara h 1 in Brown Norway rats¹¹

Pepsin is generally most effective at acidic pH values, in the range of pH $1.5-2.0.^{12}$ This pepsin-agarose product has been used at various acidic pH values, such as pH $2.5,^{11}$ pH $3.2,^4$ and pH $4.0.^5$ Use of pepsin and pepsin-agarose should be avoided at pH >6, because of the risk of inactivation of pepsin above this pH. Pepsin is known to be irreversibly inactivated at pH 8, for example.¹²

Components

This pepsin-agarose product is sold as a lyophilized powder, with lactose present as a stabilizing agent.

Preparation Instructions

General instructions for re-suspension of the enzymeagarose conjugates include the following steps:

- 1. Suspend the lyophilized enzyme-agarose to 5-10 mg solid/mL of water.
- 2. Allow brief hydration of the lyophilized powder.
- Filter and wash the rehydrated enzyme-agarose product several times with either water or buffer of choice.
- 4. Re-suspend the enzyme-agarose in the buffer of choice. The product is now ready for use.

Storage/Stability

For re-use of the enzyme-agarose conjugates, the following steps may be used as a general guide.

- Wash the enzyme-agarose with water and/or buffer, such as 50 mM trisodium citrate (pH 5.0) specifically for pepsin-agarose,¹³ until it is free of substrates.
- One publication has stored re-suspended pepsinagarose in 10 mM sodium acetate buffer (pH 4.5), with 0.02% sodium azide as a preservative.¹⁴ However, Sigma-Aldrich has not tested this specific situation ourselves.

- For long-term storage, enzyme-agarose products may be re-converted to their dry form, as follows:
 - 1. Wash the enzyme-agarose with 50 mM trisodium citrate (pH 5.0).
 - 2. Drain excess buffer.
 - 3. Dry the enzyme-agarose in a vacuum desiccator.
 - 4. Store the freshly lyophilized enzyme-agarose at 2–8 °C.

Precautions and Disclaimer

For R&D use only. Not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

References

- 1. Sepulveda. P. *et al.*, *J. Biol. Chem.*, **250(13)**, 5082-5088 (1975).
- Sweeney, P.J., and Walker, J.M., "Proteolytic Enzymes for Peptide Production", in *Methods in Molecular Biology: Enzymes of Molecular Biology* (M.M. Burrell, ed.). Humana Press (Totowa, NJ), Vol. 16, pp. 277-303 (1993).
- 3. *Enzymes* (M. Dixon *et al.*, eds.). Academic Press (New York, NY), p. 262 (1979).

- 4. Audet, S. *et al.*, *J. Infect. Dis.*, **194(6)**, 781-789 (2006).
- 5. Luo, H. *et al.*, *J. Chromatogr. A.*, **1424**, 92-101 (2015).
- Taga, Y. et al., Cell Chem. Biol., 24(10), 1276-1284 e3 (2017).
- Jha, R. et al., J. Anim. Sci., 93(3), 1039-1051 (2015).
- 8. Liu, Y. *et al.*, *J. Anim. Sci.*, **96(11)**, 4685-4692 (2018).
- Wahab, W.A. et al., Int. J. Exp. Pathol., 97(4), 303-309 (2016).
- 10. Lindholm Bøgh, K. *et al.*, *Int. Arch. Allergy Immunol.*, **161(1)**, 21-36 (2013).
- 11. Bøgh, K.L. *et al.*, *Clin. Exp. Allergy*, **39(10)**, 1611-1621 (2009).
- 12. Piper, D.W., and Fenton, B.H., *Gut*, **6(5)**, 506-508 (1965).
- 13. Ahn, J. *et al.*, *Anal. Chem.*, **84(16)**, 7256-7262 (2012).
- Vretblad, P., and Axén, R., *FEBS Lett.*, **18(2)**, 254-256 (1971).

GCY,MAM 11/19-1

2