

Saint Louis, Missouri 63103 USA Telephone (800) 325-5832 (314) 771-5765 Fax (314) 286-7828 email: techserv@sial.com sigma-aldrich.com

ProductInformation

PEPSTATIN A

from microbial source

Product Number **P 5318**Storage Temperature 2-8 °C

CAS #: 26305-03-3

Product Description

Appearance: White powder Molecular formula: C₃₄H₆₃N₅O₉ Molecular weight: 685.9

Structure: 1 Isovalery-Val-Val-Sta-Ala-Sta

where Sta = statine = (3S,4S)-4-amino-3hydroxy-6-methylheptanoic acid

K_i for Pepsin: ² approximately 10⁻¹⁰ M.

Pepstatin A is an inhibitor of acid proteases (aspartyl peptidases). It forms a 1:1 complex with proteases such as pepsin, ^{1,2} renin, ^{1,2} cathepsin D, ^{1,2} bovine chymosin, ² and protease B (*Aspergillus niger*). The inhibitor is highly selective ⁴ and does not inhibit thiol proteases, neutral proteases or serine proteases. Solublized γ-secretase ⁵ and retroviral protease ⁶ are also inhibited by Pepstatin A. It has been used to characterize proteases from several sources. Pepstatin A is thought to inhibit by a collected-substrate inhibition mechanism.

This inhibitor is often used as a component in a final mixture with other inhibitors (as in Sigma Protease Inhibitor Cocktails). One recommended set of stock solution concentrations is: bestatin (1.7 mM, selective for aminopeptidase), E-64 (0.22 mM, for cysteine proteases), Pepstatin A (2.5 mM, for aspartyl proteases), AEBSF (18 mM, for serine proteases) and disodium EDTA (86 mM, for metalloproteases).

Preparation Instructions

Pepstatin A is only sparingly soluble in water.4

The solubility of Pepstatin A is related to the purity of the preparation. P 5318, a purer form (minimum 90%) of Pepstatin A than P 4265, is insoluble at any concentration in methanol or DMSO. It can be dissolved at 1 mg/mL in 10% (v/v) acetic acid in methanol (9:1 methanol:acetic acid). The inclusion of acetic acid is necessary to dissolve this peptide in methanol or DMSO. It has been dissolved at

1-2 mg/ml in ethanol, but heat may be required for complete solution. Solutions of Pepstatin A can be heated as high as 60 °C without any decomposition of the peptide. The recommended procedure is to include acetic acid.

Stock solutions at 1 mg/mL should be stable at least a week at 4 °C. A 1 mM solution in methanol should be stable for months at –20 °C. If solutions become more yellow the reagent is hydrolyzing.

An effective working concentration is 1 μ M, stable for at least one day at room temperature. ¹⁰ A typical working concentration is 0.5-1.0 μ g/mL.

Storage/Stability

When stored at 2-8 $^{\circ}\text{C}$ this product has a shelf life of three years.

References

- 1. Umezawa, H., *Methods in Enzymology*, **45**, 689 (1976).
- Marciniszyn, J., et al., Adv. Exp. Med. Biol. 95, 199 (1977).
- 3. Takahashi, K., and Chang, W. J., *J. Biochem.* (*Tokyo*), **80**, 497 (1976).
- 4. Dunn, B.M., in *Proteolytic Enzymes: A Practical Approach*, R.J. Beynon and J.S. Bond, eds. (IRL Press, 1989), p. 63.
- Li, Y.-M., et al., Proc. Natl. Acad. Sci USA, 97, 6138 (2000).
- 6. Katoh, I., et al., Nature, 329, 654 (1987).
- 7. Arima, K., et al., *Phytochemistry*, **54**, 559 (2000).
- 8. Farias, M. E., and Manca de Nadra, M. C., *FEM Microbiol. Lett.* **185**, 263 (2000).
- 9. Rich, D. H., et al. *Biochemistry*, **24**, 3165 (1985).
- Proteolytic Enzymes: A Practical Approach, R.J. Beynon and J.S. Bond, eds. (IRL Press, 1989), p. 245 (Appendix III).

JWM 3/19/01