Product Information ## 95293 Hydrogen ionophore I – Cocktail B (H⁺-selective membrane solution for microelectrodes) Selectophore[®] ### **Electrochemical Transduction** #### **Microelectrodes** #### Application 1 and Sensor Type¹⁻¹⁶ Assay of H⁺ activity in extra- and intracellular (single-cell) liquids with H⁺ microelectrodes based on Hydrogen ionophore I. This cocktail does not need to be equilibrated with CO₂. Hydrogen ionophore I - -Cocktail B (95293) #### **Cocktail Composition** 10.00 wt% Hydrogen ionophore I (95292) 0.70 wt% Sodium tetra(4-chlorophenyl)borate (60591) 89.30 wt% 2-Nitrophenyl octyl ether (73732) equilibration with carbon dioxide #### **Recommended Cell Assembly** Reference | sample solution | cocktail | buffer solution, pH 7 | AgCl, Ag #### **Electrode Characteristics and Function** Selectivity coefficients $\log K_{H,M}^{Pot}$ as obtained by the fixed interference solution method on pH-buffered solutions. $\log K_{H,Li}^{Pot}$ -10.8 $\log K_{H,K}^{Pot}$ -9.8 $\log K_{H,Na}^{Pot}$ -10.4 $\log K_{H,Ca}^{Pot}$ <-11.1 Slope of linear regression: 58.0±0.4 mV/dec (pH 5.5-12.0) Practical pH measuring range (pH buffered solutions, ion background of 69 mM $\rm Na^+, 11.4$ mM borate, 10 mM phosphate, 6.7 mM citrate): 5.5-12.0 Electrical resistance, tip diameter $\sim 1~\mu m$ $\sim 10^{11}~\Omega$ Response time: 90% response time: ≤5 s - ¹ A hydrogen ion-selective liquid-membrane electrode based on tri-n-dodecylamine as neutral carrier. P. Schulthess, Y. Shijo, H. V. Pham, E. Pretsch, D. Ammann, W. Simon, Anal. Chim. Acta 131, 111 (1981). - ² Neutral carrier based hydrogen ion selective microelectrode for extra- and intracellular studies. D. Ammann, F. Lanter, R. A. Steiner, P. Schulthess, Y. Shijo, W. Simon, Anal. Chem. 53, 2267 (1981). - ³ Alkaline and acid transients in cerebellar microenvironment. R. P. Kraig, C. R. Ferreira-Filho, C. Nicholson, J. Neurophysiol. 49, 831 (1983). - ⁴ Preparation and use of micro- and macroelectrodes for measurement of transmembrane potentials and ion activities. D. Ammann, P. Caroni, Methods in Enzymol. 172, 136 (1989). - ⁵ Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. W. A. C. Mutch, A. J. Hansen, J. Cerebr. Blood Flow Metabol. 4, 17 (1984). - ⁶ Sodium-dependent control of intracellular pH in Purkinje fibres of sheep heart. D. Ellis, K. T. MacLeod, J. Physiol. 359, 81 (1985). - ⁷ A dual mechanism for intracellular pH regulation by leech neurons. W. R. Schlue, R. C. Thomas, J. Physiol. 364, 327 (1985). - ⁸ Direct measurement of intracellular pH and buffering power in smooth muscle cells of guinea-pig vas deferens. C. C. Aickin, J. Physiol. 349, 571 (1984). - ⁹ Intracellular pH regulation in the sensory neurone of the stretch receptor of the crayfish (Astacus fluviatilis). H. Moser, J. Physiol. 362, 23 (1985). - 10 A new microelectrode method for simultaneous measurement of pH and P_{CO2} . K. Bomsztyk, M. B. Calalb, Am. J. Physiol. 251, F933 (1986). - ¹¹ Mechanism of hydrogen ion transport in the diluting segment of frog kidney. H. Oberleithner, F. Lang, G. Messner, W. Wang Pflügers, Arch. 402, 272 (1984). - ¹² Cell pH of rat renal proximal tubule in vivo and the conductive nature of peritubular HCO3-(OH⁻) exit. K. Yoshitomi, E. Frömter, Pflügers Arch. 402, 300 (1984). - ¹³ The effect of phenylalanine on intracellular pH and sodium activity in proximal convoluted tubule cells of the frog kidney. G. Messner, A. Koller, F. Lang, Pflügers Arch. 404, 145 (1985). - ¹⁴ Regulation of intracellular sodium and pH by the electrogenic H⁺ pump in frog skin. B. J. Harvey, J. Ehrenfeld, Pflügers Arch. 406, 362 (1986). - ¹⁵ Eccentric double micropipette suitable for both pHI micro-electrodes and for intracellular iontophoresis. R. C. Thomas, J. Physiol. 371, 24P (1986). - ¹⁶ Éffects of intra- and extracellular H⁺ and Na⁺ concentrations on Na(+)-H⁺ antiport activity in the lacrimal gland acinar cells. Y. Saito, T. Ozawa, A. Nishiyama, Pflügers Arch. 417, 382 (1990).