D3179
2-Deoxy-D-glucose
≥98% (GC), BioXtra
Synonym(s):
2-Deoxy-D-arabinohexose
Sign Into View Organizational & Contract Pricing
Select a Size
All Photos(4)
Select a Size
Change View
About This Item
Empirical Formula (Hill Notation):
C6H12O5
CAS Number:
Molecular Weight:
164.16
Beilstein/REAXYS Number:
1723331
EC Number:
MDL number:
UNSPSC Code:
12352201
PubChem Substance ID:
NACRES:
NA.25
Recommended Products
biological source
synthetic (organic)
Quality Level
product line
BioXtra
assay
≥98% (GC)
form
powder
technique(s)
gas chromatography (GC): suitable
impurities
≤0.001% Phosphorus (P)
<0.1% Insoluble matter
ign. residue
<0.1%
color
white
mp
146-147 °C (lit.)
Looking for similar products? Visit Product Comparison Guide
Application
2-Deoxy-D-glucose was used in the development of anti-cancer strategies that involve radio- and chemosensitization and oxidative stress. It was used in glucoprivic feeding research to invoke and study the processes of counter-regulatory response (CRR).
Biochem/physiol Actions
2-Deoxy-D-Glucose (2-Deoxyglucose) is a glucose analog that inhibits glycolysis via its action on hexokinase, the rate limiting step of glycolysis. It is phosphorylated by hexokinase to 2-DG-P which can not be further metabolized by phosphoglucose isomerase. This leads to the accumulation of 2-DG-P in the cell and the depletion in cellular ATP. In vitro, 2-Deoxyglucose has been shown to induce autophagy, increases ROS production, and activate AMPK.
2-Deoxy-D-Glucose (2-Deoxyglucose) is a glucose analog that inhibits glycolysis via its actions on hexokinase, the rate limiting step of glycolysis. It is phosphorylated by hexokinase to 2-DG-P which can not be further metabolized by phosphoglucose isomerase. This leads to the accumulation of 2-DG-P in the cell and the depletion in cellular ATP. In vitro, 2-Deoxyglucose has been shown to induce autophagy, increase ROS production, and activate AMPK.
Other Notes
To gain a comprehensive understanding of our extensive range of Monosaccharides for your research, we encourage you to visit our Carbohydrates Category page.
Storage Class
11 - Combustible Solids
wgk_germany
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Gloves, type N95 (US)
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Craig Beall et al.
American journal of physiology. Regulatory, integrative and comparative physiology, 302(2), R215-R223 (2011-11-11)
Despite significant technological and pharmacological advancements, insulin replacement therapy fails to adequately replicate β-cell function, and so glucose control in type 1 diabetes mellitus (T1D) is frequently erratic, leading to periods of hypoglycemia. Moreover, the counterregulatory response (CRR) to falling
Abdullah Farooque et al.
Journal of cancer research and therapeutics, 5 Suppl 1, S32-S35 (2009-12-17)
Normal tissue toxicity is one of the major limiting factors in cancer therapy. Damage to normal tissues and critical organs restricts the use of higher therapeutic doses thereby compromising the efficacy. The glucose analog 2-deoxy-D-glucose (2-DG), an inhibitor of glycolytic
B S Dwarakanath
Journal of cancer research and therapeutics, 5 Suppl 1, S27-S31 (2009-12-17)
The glucose analog 2-deoxy-D-glucose (2-DG), an inhibitor of glucose transport and glycolytic ATP production, is the most widely investigated metabolic inhibitor for targeting glucose metabolism. Besides depleting energy in cells, 2-DG has also been found to alter N-linked glycosylation leading
Madhusudhanan Sukumar et al.
The Journal of clinical investigation, 123(10), 4479-4488 (2013-10-05)
Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately
Rosemarie Ungricht et al.
The Journal of cell biology, 209(5), 687-703 (2015-06-10)
Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service